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Overrepresentation of Extreme Events in Decision Making Reflects
Rational Use of Cognitive Resources

Falk Lieder, Thomas L. Griffiths, and Ming Hsu
University of California, Berkeley

People’s decisions and judgments are disproportionately swayed by improbable but extreme eventuali-
ties, such as terrorism, that come to mind easily. This article explores whether such availability biases can
be reconciled with rational information processing by taking into account the fact that decision makers
value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of
their finite time decision makers should overrepresent the most important potential consequences relative
to less important, put potentially more probable, outcomes. To evaluate this account, we derive and test
a model we call utility-weighted sampling. Utility-weighted sampling estimates the expected utility of
potential actions by simulating their outcomes. Critically, outcomes with more extreme utilities have a
higher probability of being simulated. We demonstrate that this model can explain not only people’s
availability bias in judging the frequency of extreme events but also a wide range of cognitive biases in
decisions from experience, decisions from description, and memory recall.
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models of cognition
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Human judgment and decision making have been found to
systematically violate the axioms of logic, probability theory, and
expected utility theory (Tversky & Kahneman, 1974). These vio-
lations are known as cognitive biases and are assumed to result
from people’s use of heuristics—simple and efficient cognitive
strategies that work well for certain problems but fail on others.
Although some have interpreted the abundance of cognitive biases
as a sign that people are fundamentally irrational (Ariely, 2009;
Marcus, 2009; McRaney, 2011; Sutherland, 1992) others have
argued that people appear irrational only because their reasoning
has been evaluated against the wrong normative standards (Oaks-
ford & Chater, 2007), that the heuristics giving rise to these biases

are rational given the structure of the environment (Simon, 1956;
Todd & Gigerenzer, 2012), or that the mind makes rational use of
limited cognitive resources (Dickhaut, Rustichini, & Smith, 2009;
Griffiths, Lieder, & Goodman, 2015; Lieder, Griffiths, & Good-
man, 2013; Simon, 1956; Wiederholt, 2010).

One of the first biases interpreted as evidence against human
rationality is the availability bias (Tversky & Kahneman, 1973):
people overestimate the probability of events that come to mind
easily. This bias violates the axioms of probability theory. It leads
people to overestimate the frequency of extreme events (Lichten-
stein, Slovic, Fischhoff, Layman, & Combs, 1978) and this in turn
contributes to overreactions to the risk of terrorism (Sunstein &
Zeckhauser, 2011) and other threats (Lichtenstein et al., 1978;
Rothman, Klein, & Weinstein, 1996). Such availability biases
result from the fact that not all memories are created equal:
although most unremarkable events are quickly forgotten, the
strength of a memory increases with the magnitude of its positive
or negative emotional valence (Cruciani, Berardi, Cabib, & Con-
versi, 2011). This may be why memories of extreme events, such
as a traumatic car accident (Brown & Kulik, 1977; Christianson &
Loftus, 1987) or a big win in the casino, come to mind much more
easily (Madan, Ludvig, & Spetch, 2014) and affect people’s deci-
sions more strongly (Ludvig, Madan, & Spetch, 2014) than mod-
erate events, such as the 2,476th time you drove home safely and
the 1739th time a gambler lost $1 (Thaler & Johnson, 1990).

The availability bias is commonly assumed to be irrational, but
here we propose that it might reflect the rational use of finite time
and limited cognitive resources (Griffiths et al., 2015). We explore
the implications of these bounded resources within a rational
modeling framework (Griffiths, Vul, & Sanborn, 2012) that cap-
tures the inherent variability of people’s decisions (Vul, Goodman,
Griffiths, & Tenenbaum, 2014) and judgments (Griffiths & Te-
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nenbaum, 2006). According to our mathematical analysis, the
availability bias could serve to help decision makers focus their
limited resources on the most important eventualities. In other
words, we argue that the overweighting of extreme events ensures
that the most important possible outcomes (i.e., those with extreme
utilities) are always taken into account even when only a tiny
fraction of all possible outcomes can be considered. Concretely,
we show that maximizing decision quality under time constraints
requires biases compatible with those observed in human memory,
judgment, and decision making. Without those biases the decision
maker’s expected utility estimates would be so much more vari-
able that her decisions would be significantly worse. This follows
directly from a statistical principle known as the bias-variance
tradeoff (Hastie, Tibshirani, & Friedman, 2009).

Starting from this principle, we derive a rational process model
of memory encoding, judgment, and decision making that we call
utility-weighted learning (UWL). Concretely, we assume that the
mind achieves a near-optimal bias-variance tradeoff by approxi-
mating the optimal importance sampling algorithm (Geweke,
1989; Hammersley & Handscomb, 1964) from computational sta-
tistics. This algorithm estimates the expected value of a function
(e.g., a utility function) by a weighted average of its values for a
small number of possible outcomes. To ensure that important
potential outcomes are taken into account, optimal importance
sampling optimally prioritizes outcomes according to their prob-
ability and the extremity of their function value. The resulting
estimate is biased toward extreme outcomes but its reduced vari-
ance makes it more accurate. To develop our model, we apply
optimal importance sampling to estimating expected utilities. We
find that this enables better decisions under constrained resources.
The intuitive reason for this benefit is that overweighting extreme
events ensures that the most important possible outcomes (e.g., a
catastrophe that has to be avoided or an epic opportunity that
should be seized) are always taken into account even when only a
tiny fraction of all possible outcomes can be considered.

According to our model, each experience o creates a memory
trace whose strength w is proportional to the extremity of the
event’s utility u(o) (i.e., w � |u(o) � u� | where u� is a reference
point established by past experience). This means that when a
person experiences an extremely bad event (e.g., a traumatic
accident) or an extremely good event (e.g., winning the jackpot)
the resulting memory trace will be much stronger than when the
utility of the event was close to zero (e.g., lying in bed and looking
at the ceiling). Here, we refer to events such as winning the jackpot
and traumatic car accidents as ‘extreme’ not because they are rare
or because their utility is far from zero but because they engender
a large positive or large negative difference in utility between one
choice (e.g., to play the slots) versus another (e.g., to leave the
casino).

In subsequent decisions (e.g., whether to continue gambling or
call it a day), the model probabilistically recalls past outcomes of
the considered action (e.g., the amounts won and lost in previous
rounds of gambling) according to the strengths of their memory
traces. As a result, the frequency with which each outcome is
recalled is biased by its utility even though the recall mechanism
is oblivious to the content of each memory.

Concretely, the probability that the first recalled outcome is an
instance of losing $1 would be proportional to the sum of its
memory traces’ strengths. Although this event might have oc-

curred very frequently, each of its memory traces would be very
weak. For instance, although there might be 1,345 memory traces
their strengths would be small (e.g., |u(�$1) � u� | with u� close to
u(�$1)). Thus, the experience of losing $1 in the gamble would be
only moderately available in the gambler’s memory (total memory
strength 1345 · |u (�$1) � u� | ). Therefore, the one time when the
gambler won $1,000 might have a similarly high probability of
coming to mind because its memory trace is significantly stronger
(e.g., one memory trace of strength |u($1,000) � u� | ). According
to our model, this probabilistic retrieval mechanism will sample a
few possible outcomes from memory. These simulated outcomes
(e.g., o1 � $1,000, o2 � $ � 1, . . . , o5 � $1,000) are then used
to estimate the expected utility of the considered action by a
weighted sum of their utilities where the theoretically derived
weights partly correct for the utility-weighting of the memory
traces (i.e., Û � �i wi · u�oi� with wi � 1

| u�oi� � ū | ). Finally, the
considered action is chosen if and only if the resulting estimate of
the expected utility gain is positive.

Our model explains why extreme events come to mind more
easily, why people overestimate their frequency, and why they are
overweighted in decision making. It captures published findings on
biases in memory recall, frequency estimation, and decisions from
experience (Erev et al., 2010; Ludvig et al., 2014; Madan et al.,
2014) as well as three classic violations of expected utility theory
in decisions from description. Our model is competitive with the
best existing models of decisions from experience and correctly
predicted the previously unobserved correlation between events’
perceived extremity and the overestimation of their frequencies.
The empirical evidence that we present strongly supports the
model’s assumption that the stronger memory encoding of events
with extreme utilities causes biases in memory recall that in turn
lead to biases in frequency estimation and decision making. Con-
cretely, people remember extreme events more frequently than
equally frequent events of moderate utility, overestimate their
frequency, and overweight them in decision making (Ludvig et al.,
2014). Furthermore, the magnitude of overweighting increases
significantly with the magnitude of the memory bias (Madan et al.,
2014), and we found that the extent to which people overestimate
an event’s frequency correlates significantly with its extremity.
The theoretical significance of our analysis is twofold: it provides
a unifying mechanistic and teleological explanation for a wide
range of seemingly disparate cognitive biases and it suggests that
at least some heuristics and biases might reflect the rational use of
finite time and limited cognitive resources (Griffiths et al., 2015).

The remainder of this article proceeds as follows: We start by
deriving a novel decision mechanism as the rational use of finite
time under reasonable, abstract assumptions about the mind’s
computational architecture. We show that the derived mechanism
captures people’s availability biases in frequency judgment and
memory recall. Next, we demonstrate that the same mechanism
can also account for three classic violations of expected utility
theory and evaluate it against alternative models of decisions from
description. We proceed to show that our model can also capture
the heightened availability, overestimation, and overweighting of
extreme events in decisions from experience. Finally, we show that
utility-weighted sampling can emerge from a biologically plausi-
ble learning mechanism that captures the temporal evolution of
people’s risk preferences in decisions from experience and evalu-
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ate it against alternative models of decisions from experience. We
conclude with implications for the debate on human rationality and
directions for future research.

Resource-Rational Decision Making by
Utility-Weighted Sampling

According to expected utility theory (Von Neumann & Morgen-
stern, 1944), decision makers should evaluate each potential action
a by integrating the probabilities P(o |A � a) of its possible
outcomes o with their utilities u(o) into the action’s expected utility
�p�O � A�a��u�O��. Unlike simple laboratory tasks where each choice
can yield only a small number of possible payoffs, many real-life
decisions have infinitely many possible outcomes.1 As a conse-
quence, the expected utility of action a becomes an integral:

�p(O | A�a)[u(O)] � � p(o |a) · u(o)do. (1)

In the general case, this integral is intractable to compute. Below
we investigate how the brain might approximate the solution to
this intractable problem.

Sampling as a Decision Strategy

To explore the implications of resource constraints on decision
making under uncertainty, we model the cognitive resources avail-
able for decision making within a formal computational frame-
work that has been successfully used to develop rational process
models of human cognition and can capture the variability of
human performance, namely sampling (Griffiths et al., 2012).
Sampling methods can provide an efficient approximation to in-
tegrals such as the expected utility in Equation 1 (Hammersley &
Handscomb, 1964), and mental simulations of a decision’s poten-
tial consequences can be thought of as samples. The idea that the
mind handles uncertainty by sampling is consistent with neural
variability in perception (Fiser, Berkes, Orbán, & Lengyel, 2010)
and the variability of people’s judgments (Denison, Bonawitz,
Gopnik, & Griffiths, 2013; Griffiths & Tenenbaum, 2006; Vul et
al., 2014). For instance, people’s predictions of an uncertain quan-
tity X given partial information y are roughly distributed according
to its posterior distribution p(X |y) as if they were sampled from it
(Griffiths & Tenenbaum, 2006; Vul et al., 2014). Such variability
has also been observed in decision making: in repeated binary
choices from experience animals chose each option stochastically
with a frequency roughly proportional to the probability that it will
be rewarded (Herrnstein & Loveland, 1975). This pattern of choice
variability, called probability matching, is consistent with the
hypothesis that animals perform a single simulation and chose the
simulated action whenever its simulated outcome is positive. Peo-
ple also exhibit probability matching when the stakes are low, but
as the stakes increase their choices transition from probability
matching to maximization (Vulkan, 2000). This transition might
arise from people gradually increasing the number of samples they
generate to maximize the amount of reward they receive per unit
time (Vul et al., 2014). Decision mechanisms based on sampling
from memory can explain a wide range of phenomena (N. Stewart,
Chater, & Brown, 2006). Concordant with recent drift-diffusion
models (Shadlen & Shohamy, 2016) and query theory (Johnson,
Häubl, & Keinan, 2007; Weber et al., 2007), this approach as-

sumes that preferences are constructed (Payne, Bettman, & John-
son, 1992) through a sequential, memory-based cognitive process.

Assuming that people make decisions by sampling, we can
express time and resource-constraints as a limit on the number of
samples, where each sample is a simulated outcome: According to
our theory, the decision maker’s primary cognitive resource is a
probabilistic simulator of the environment. The decision maker can
use this resource to anticipate some of the many potential futures
that could result from taking one action versus another, but each
simulation takes a non-negligible amount of time. Since time is
valuable and the simulator can perform only one simulation at a
time, the cost of using this cognitive resource is thus proportional
to the number of simulations (i.e., samples).

If a decision has to be based on only a small number of
simulated outcomes, what is the optimal way to generate them?
Intuitively, the rational way to decide whether to take action a is
to simulate its consequences o according to one’s best knowledge
of the probability p that they will occur and average the resulting
gain in utility �u(o) to obtain an estimate of �Ûs

RS�a� of the
expected gain or loss in utility for taking action a over not taking
it, that is

�Ûs
RS(a) � 1

s�i�1

s

�u(oi), o1, . . . , os � p(O). (2)

This decision strategy, which we call representative sampling
(RS), generates an unbiased utility estimate. Yet—surprisingly—
representative sampling is insufficient for making good decisions
with very few samples. Consider, for instance, the choice between
accepting versus declining a game of Russian roulette with the
standard issue six-round NGant M1895 revolver. Playing the game
will most likely, that is, with probability p1 � 5

6, reward you with
a thrill and save you some ridicule (�u(o1) � 1) but kill you
otherwise (p2 � 1

6, �u�o2� � �109). Ensuring that representative
sampling declines a game of Russian roulette at least 99.99% of
the time, would require 51 samples—potentially a very time-
consuming computation.

Like Russian roulette, many real-life decisions are complicated
by an inverse relationship between the magnitude of the outcome
and its probability (Pleskac & Hertwig, 2014). Many of these
problems are much more challenging than declining a game of
Russian roulette, because their probability of disaster is orders of
magnitude smaller than 1

6 and it may or may not be large enough
to warrant caution. Examples include risky driving, medical deci-
sions, diplomacy, the stock market, and air travel. For some of
these choices (e.g., riding a motor cycle without wearing a helmet)
there may be a one in a million chance of disaster whereas all other
outcomes have negligible utilities:

�u(od) � �109, p(od) � 10�6, ∀i � d : |�u(oi) | � 1. (3)

If people decided based on n representative samples, they would
completely ignore the potential disaster with probability 1 � (1 �
10�6)n. Thus to have at least a 50% chance of taking the potential
disaster into account they would have to generate almost 700000

1 People often cope with this complexity by partitioning possible out-
comes into chunks like “stock goes up” versus “stock goes down”. We do
not consider this approximation to be an inherent component of the
problem itself, but rather as useful component of many heuristic strategies.
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samples. This is clearly infeasible; thus one would almost always
take this risk even though the expected utility gain is about �1000.
In conclusion, representative sampling is insufficient for resource-
bounded decision making when some of the outcomes are highly
improbable but so extreme that they are nevertheless important.
Therefore, the robustness of human decision making suggests that
our brains use a more sophisticated sampling algorithm—such as
importance sampling.

Importance sampling is a popular sampling algorithm in com-
puter science and statistics (Geweke, 1989; Hammersley & Hand-
scomb, 1964) with connections to both neural networks (Shi &
Griffiths, 2009) and psychological process models (Shi, Griffiths,
Feldman, & Sanborn, 2010). It estimates a function’s expected
value with respect to a probability distribution p by sampling from
an importance distribution q and correcting for the difference
between p and q by down-weighting samples that are less likely
under p than under q and up-weighting samples that are more
likely under p than under q. Concretely, self-normalized impor-
tance sampling (Robert & Casella, 2009) draws s samples x1, . . . , xs

from a distribution q, weights the function’s value f(xj) at each

point xj by the weight wj �
p�xj�
q�xj�

and then normalizes its estimate by
the sum of the weights:

X1, . . . , Xs � q, wj �
p(xj)
q(xj)

(4)

�p[f(X)] 	 Êq,s
IS � 1

�j�1
s wj

· �
j�1

s

wj · f(xj). (5)

With finitely many samples, this estimate is generally biased.
Following Zabaras (2010), we approximate its bias and variance
by

Bias[Êq,s
IS ] 	 1

s · � p(x)2

q(x) · (�p[f(x)] � f(x))dx (6)

Var[Êq,s
IS ] 	 1

s · � p(x)2

q(x) · (f(x) � �p[X])2dx. (7)

We hypothesize that the brain uses a strategy similar to importance
sampling to approximate the expected utility gain �p�O � A�a���u
�O�� of taking action a and approximate the optimal decision
a� � arg maxa�p�O � A�a���u�O�� by

â� � arg max
a

�Ūq,s
IS (a), �Ūq,s

IS (a) 	 �p(O | a)[�u(o)] (8)

�Ūq,s
IS (a) � 1

�j�1
s wj

�
j�1

s

wj · �u(oj), o1, . . . , os � q. (9)

Note that importance sampling is a family of algorithms: each
importance distribution q yields a different estimator, and two
estimators may recommend opposite decisions. This leads us to
investigate which distribution q yields the best decisions.

Which Distribution Should We Sample From?

Representative sampling is a special case of importance sam-
pling in which the simulation distribution q is equal to the outcome
probabilities p. Representative sampling fails when it neglects
crucial eventualities. Neglecting some eventualities is necessary,
but particular eventualities are more important than others. Intui-
tively, the importance of potential outcome oi is determined by

| p�oi� · u�oi� | because neglecting oi amounts to dropping the addend
p�oi� · u�oi� from the expected-utility integral (Equation 1). Thus,
intuitively, the problem of representative sampling can be overcome
by considering outcomes whose importance ( |p�oi� · u�oi� | ) is high
and ignoring those whose importance is low.

Formally, the agent’s goal is to maximize the expected utility
gain of a decision made from only s samples. The utility foregone
by choosing a suboptimal action can be upper-bounded by the
error in a rational agent’s utility estimate. Therefore the agent
should minimize the expected squared error of its estimate of the
expected utility gain ���U�, which is the sum of its squared bias

and variance, that is ����Ūq,s
IS � ���U��2� � Bias��Ūq,s

IS �2
�

Var��Ûq,s
IS � (Hastie et al., 2009). As the number of samples s

increases, the estimate’s squared bias decays much faster (O(s�2))
than its variance (O(s�1)); see Equations 6–7. Therefore, as the
number of samples s increases, minimizing the estimator’s vari-
ance becomes a good approximation to minimizing its expected
squared error.

According to variational calculus the importance distribution

qvar(o) 	 p(o) · |�u(o) � �p[�U] | (10)

minimizes the variance (Equation 7) of the utility estimate in
Equation 9 (Geweke, 1989; Zabaras, 2010; see Appendix A). This
means that the optimal way to simulate outcomes in the service of
estimating an action’s expected utility gain is to overrepresent
outcomes whose utility is much smaller or much larger than the
action’s expected utility gain. Each outcome’s probability is
weighted by how disappointing (�p��U� � �u�o�) or elating
(�u�o� � �p��U�) it would be to a decision maker anticipating to
receive the gamble’s expected utility gain (�p��U�). But unlike in
disappointment theory (Bell, 1985; Loomes & Sugden, 1984,
1986), the disappointment or elation is not added to the decision
maker’s utility function but increases the event’s subjective prob-
ability by prompting the decision maker to simulate that event
more frequently. Unlike in previous theories, this distortion was
not introduced to describe human behavior but derived from first
principles of resource-rational information processing: Importance
sampling oversimulates extreme outcomes to minimize the mean-
squared error of its estimate of the action’s expected utility gain. It
tolerates the resulting bias because it is more important to shrink
the estimate’s variance.

Unfortunately, importance sampling with qvar is intractable,
because it presupposes the expected utility gain �p��U� that im-
portance sampling is supposed to approximate. However, the av-
erage utility �ū of the outcomes of previous decisions made in a
similar context could be used as a proxy for the expected utility
gain �p��U�. That quantity has been shown to be automatically
estimated by model-free reinforcement learning in the midbrain
(Schultz, Dayan, & Montague, 1997). Therefore, people should be
able to sample from the approximate importance distribution

q̃(o) 	 p(o) · |�u(o) � �ū | . (11)

This distribution weights each outcome’s probability by the ex-
tremity of its utility. Thus, on average, extreme events will be
simulated more often than equiprobable outcomes of moderate
utility. We therefore refer to simulating potential outcomes by
sampling from this distribution as utility-weighted sampling.
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Utility-Weighted Sampling

Having derived the optimal way to simulate a small number of
outcomes (Equation 11), we now turn to the question how those
simulated outcomes should be used to make decisions under un-
certainty. The general idea is to estimate each action’s expected
utility gain from a small number of simulated outcomes, and then
choose the action for which this estimate is highest.

If the simulated outcomes were drawn representatively from the
outcome distribution p, then we could obtain an unbiased expected
utility gain estimate by simply averaging their utilities (Equation
2). However, since the simulated outcomes were drawn from the
importance distribution q̃ rather than p, we have to correct for the
difference between these two distributions by computing a
weighted average instead (Equation 5). Concretely, we have to

weight each simulated outcome oj by the ratio wj �
p�oj�
q̃�oj�

of its

probability under the outcome distribution p over its probability
under the importance distribution q̃ from which it was sampled.
Thus, the extreme outcomes that are overrepresented among the
samples from q̃ will be down-weighted whereas the moderate
outcomes that are underrepresented among the samples from q̃ will
be up-weighted. Because q̃�o� 	 p�o� · |�u�o� � �ū | , the weight
wj of outcome oj is 1

| �u�o���ū | ⁄ z
for some constant z. Since the

weighted average in Equation 5 is divided by the sum of all
weights, the normalization constant z cancels out. Hence, given
samples o1, . . . , os from the utility-weighted sampling distribution
q̃, the expected utility gain of an action or prospect can be esti-
mated by

�Ūq̃,s
IS � 1

�j�1
s 1 ⁄ ��u(oj) � �ū�

· �
j�1

s �u(oj)

��u(oj) � �ū�
.

(12)

If no information is available a priori, then there is no reason to
assume that the expected utility gain of a prospect whose outcomes
may be positive or negative should be positive, or that it should be
negative. Therefore, in these situations, the most principled guess
an agent can make for the expected utility gain �p��U� in Equation
10—before computing it—is �u� � 0. Thus, when the expected
utility gain is not too far from zero, then the importance distribu-
tion qvar for estimating the expected utility gain of a single pros-
pect can be efficiently approximated by

q̃(o) 	 p(o) · |�u(o) | . (13)

This approximation simplifies the utility-weighted sampling
(UWS) estimator of a prospect’s expected utility gain (Equation
12) into

�Ûq̃,s
IS � 1

�j�1
s 1 ⁄ |�u(oj)|

· �
j�1

s

sign(�u(oj)), oj � q̃,

(14)

where sign(x) is �1 for x � 0, 0 for x � 0, and �1 for x � 0.
This utility-weighted sampling mechanism succeeds where rep-

resentative sampling failed. For Russian roulette, the probability
that a sample drawn from the utility-weighted sampling distribu-
tion (Equation 13) considers the possibility of death (o2) is

q(o2) �
p(o2) · |�u(o2) |

p(o2) · |�u(o2) |�p(o2) · |�u(o2) |

� 1 ⁄ 6 · |�109 |
5 ⁄ 6 · |1 |�1 ⁄ 6 · |�109 |


 0.9999. (15)

Consequently, utility-weighted sampling requires only 1 rather
than 51 samples to recommend the correct decision at least 99.99%
of the time, because the first sample is almost always the most
important potential outcome (i.e., death). In this case, the utility
estimate defined in Equation 14 would be 1 ⁄ |109 | · �1 � �109

and its expected value for a single sample is also very close
to �109. Although this mechanism is biased to overestimate the
risk of playing Russian roulette (��U� � �109 ⁄6 � 5 ⁄6 
 �109),
that bias is beneficial because it makes it easier to arrive at the
correct decision. Likewise, a single utility-weighted sample suf-
fices to consider the potential disaster (Equation 3) at least 99.85%
of the time, whereas even 700,000 representative samples would
miss the disaster almost half of the time. Thus, utility-weighted
sampling would allow people to make good decisions even under
extreme time pressure. This suggests that to achieve the optimal
bias-variance tradeoff (Hastie et al., 2009) the sampling distribu-
tion has to be biased toward extreme outcomes. This bias reduces
the variance of the utility estimate enough to enable better deci-
sions than representative sampling whose expected utility gain
estimate is unbiased but has high variance.

To apply the utility-weighted sampling model to decisions peo-
ple face in life and experiments, we have to specify the utility u(o)
of the outcomes o. To do so, we interpret an outcome’s utility as
the subjective value that the decision maker’s brain assigns to it in
the choice context. Concretely, we follow the proposal of Sum-
merfield and Tsetsos (2015) that the brain represents value in an
efficient neural code. This proposal is based on psychophysical
and neural data (Louie, Grattan, & Glimcher, 2011; Louie, Khaw,
& Glimcher, 2013; Mullett & Tunney, 2013) and fits into our
resource-rational framework: The brain’s representational band-
width is finite, because the possible range of neural firing rates is
limited. Efficient coding makes rational use of the brain’s finite
representational bandwidth by adapting the neural code to the
range of values that have to be represented in a given context. This
implies rescaling the values of potential outcomes such that all of
them lie within the representational bandwidth. If the representa-
tional bandwidth is 1 and the largest and the smallest possible
values in the current context c are oc

max and oc
min respectively, then

the utility of an outcome o should be represented by

u(o) � o
oc

max � oc
min � ε, (16)

where � � ��0, �ε� is neural noise that reflects uncertainty about
the outcome’s value. Since it is the neural representation of value
rather than value itself that drives choice, we interpret u(o) as the
subjective utility of outcome o in context c. We will consistently
use this formal definition of utility (Equation 16) in this and all
following sections.

Our basic UWS model of how people estimate a prospect’s
expected utility thus has only two parameters: the number of
samples s and the unreliability �ε of the decision maker’s repre-
sentation of utility.
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Utility-Weighted Sampling in Binary Choices Yields a
Simple Heuristic

Having derived a resource-rational mechanism for estimating
expected utilities, we now translate it into a decision strategy.
Many real-world decisions and most laboratory tasks involve
choosing between two actions a1 and a2 with uncertain outcomes
O�1� � 
o1

�1�, o2
�1�, . . . , on1

�1�� and O�2� � 
o1
�2�, o2

�2�, . . . , on2

�2�� that de-
pend on the unknown state of the world. Consider, for example, the
choice between two lottery tickets: the first ticket offers a 1% chance
to win $1,000 at the expense of a 99% risk to lose $1 (O(1) � {�1,
1000}) and the second ticket offers a 10% chance to win $1,000 at
the expense of a 90% risk to lose $100 (O(2) � {�100, 1000}).
According to expected utility theory, one should choose the first
lottery (taking action a1) if ��u�O�1��� 
 ��u�O�2��� and the second
lottery (action a2) if ��u�O�1���  ��u�O�2���. This is equivalent
to taking the first action if the expected utility difference
��u�O�1�� � u�O�2��� is positive and the second action if it is
negative. The latter approach can be approximated very efficiently
by focusing computation on those outcomes for which the utilities
of the two actions are very different and ignoring events for which
they are (almost) the same. For instance, it would be of no use to
simulate the event that both lotteries yield $1,000 because it would
not change the decision maker’s estimate of the differential utility
and thus have no impact on her decision. To make rational use of
their finite resources, people should thus use utility-weighted sam-
pling to estimate the expected value of the two actions’ differential
utility �U � u(O(1)) � u(O(2)) as efficiently as possible. This is
accomplished by sampling pairs of outcomes from the bivariate
importance distribution

q�
� (O(1), O(2)) 	 p(O(1), O(2)) · |u(O(1)) � u(O(2)) � �[�U] | ,

(17)

integrating their differential utilities according to

�Ûq,s
IS � 1

�j�1
s wj

· �
j�1

s

wj · �u�oj
(1)� � u�oj

(2)��,

o1, . . . , os � q�(O(1), O(2)), (18)

and then choosing the first action if the estimated differential
utility is positive, that is

â� � �
1 if �Ûq,s

IS 
 0

2 if �Ûq,s
IS  0

1 with p � 0.5 and 2 with p � 0.5 if �Ûq,s
IS � 0

. (19)

Note that each simulation considers a pair of outcomes: one for the
first alternative and one for the second alternative. This is espe-
cially plausible when the outcomes of both actions are determined
by a common cause. For instance, the utilities of wearing a shirt
versus a jacket on a hike are both primarily determined by the
weather. Hence, reasoning about the weather naturally entails
reasoning about the outcomes of both alternatives simultaneously
and evaluating their differential utilities in each case (e.g., rain,
sun, wind, etc.) instead of first estimating the utility of wearing a
shirt and then starting all over again to estimate the utility of
wearing a jacket.

Given that there is no a priori reason to expect the first option to
be better or worse than the second option, ���U� is 0 and the
equation simplifies to

q�(O(1), O(2)) 	 p(O(1), O(2)) · |u(O(1)) � u(O(2)) | . (20)

This distribution captures the fact that the decision maker should
never simulate the possibility that both lotteries yield the same
amount of money—no matter how large it is. It does not over-
weight extreme utilities per se, but rather pairs of outcomes whose
utilities are very different. Its rationale is to focus on the outcomes
that are most informative about which action is best. For instance,
in the example above, our UWS model of binary choice over-
weights the unlikely event in which the first ticket wins $1,000 and
the second ticket loses $100. Plugging the optimal importance
distribution (Equation 20) into the UWS estimate for the expected
differential utility yields an intuitive heuristic for choosing be-
tween two options. Formally, the optimal importance sampling
estimator for the expected value of the differential utility
(���U�) is

�Ûq̃,s
IS � 1

�j�1
s 1 ⁄ |u�oj

(1)� � u�oj
(2)� |

· �
j�1

s

sign(u�oj
(1)� � u�oj

(2)� ),

oj � q�, (21)

where sign(x) is �1 for positive x and �1 for negative x. If the
heightened availability of extreme events roughly corresponded to
the utility-weighted sampling distribution (Equation 20), then the
decision rule in Equation 21 could be realized by the following
simple and psychologically plausible heuristic for choosing be-
tween two actions:

1. Imagine a few possible events (e.g., 1. Ticket 1 wins and
ticket 2 loses. 2. Ticket 2 wins and ticket 1 loses. 3.
Ticket 1 winning and ticket 2 losing comes to mind
again. 4. Both tickets lose.).

2. For each imagined scenario, evaluate which action would
fare better (1. ticket 1, 2. ticket 2, 3. ticket 1, 4. ticket 1).

3. Count how often the first action fared better than the
second one (3 out of 4 times).

4. If the first action fared better more often than the second
action, then choose the first action, else choose the sec-
ond action (Get ticket 1!).

As a quantitative example, consider how UWS would choose
between a ticket with a 10% chance of winning $99 and a 90%
chance of losing $1 versus winning $1 for sure. If, the frequency
with which events come to mind reflects utility-weighted sam-
pling, then people could simply tally whether winning came to
mind more often than losing. According to UWS, winning should
came to mind about 86% of the time whereas losing should come
to mind only about 14% of the time (the derivation of these
simulation frequencies is provided in Appendix B). Hence, if
the decision maker imagined the outcome of choosing the gamble
twice, there would be a 71.4% chance that winning came to mind
twice, a 26.2% chance that winning and losing each came to mind
once, and an only 2.4% chance of imagining losing twice. In the
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first case, the heuristic would always choose the gamble, in the
second case it would choose it half of the time, and in the last case
it would always decline the gamble. Hence, simply tallying which
option (gambling vs. playing it safe) the imagined outcomes fa-
vored more frequently (and breaking ties at random) would be
sufficient to make the correct decision 84% of the time despite
having imagined the outcome only twice. Appendix B provides a
complete description of this worked example, and Appendix C
applies UWS to the general case of choosing between a gamble
and its expected value.

The overweighting of outcomes that strongly favor one action
over another in UWS is similar to the effect of anticipated regret
in regret theory (Loomes & Sugden, 1982), but in UWS extremity
changes the frequency with which an event is simulated and does
not affect its utility. Magnifying the subjective probabilities of
extreme events makes UWS more similar to salience theory (Bor-
dalo, Gennaioli, & Shleifer, 2012) according to which pairs of
payoffs that are very different receive more attention than pairs of
payoffs that are similar. Yet, although salience theory provides a
descriptive account of binary choice frequencies in decisions from
description, UWS additionally provides a resource-rational mech-
anistic account of decisions from experience, memory recall, and
frequency judgments.

Summary and Outlook

In summary, our analysis suggested that the rational use of finite
cognitive resources implies that extreme events should be over-
represented in decision making under uncertainty. Utility-weighted
sampling is a rational process model that formalizes this predic-
tion. This biased mechanism leads to better decisions than its
unbiased alternative (i.e., representative sampling). Utility-weighted
sampling thereby enables robust decisions under time constraints
that prohibit the careful consideration of many possible outcomes.

We have derived two versions of utility-weighted sampling: The
first version estimates the expected utility gain of a single action.
The second version chooses between two actions. Although both
mechanisms overweight extreme events their notions of extremity
are different. The UWS mechanism for estimating the expected
utility gain of a single action overweights individual outcomes
with extreme utilities. By contrast, the UWS mechanism for choos-
ing between two actions overweights pairs of outcomes whose
utilities are very different. In the remainder of this article, we will
use the first mechanism to simulate frequency judgment, pricing,
and decisions from experience and the second mechanism to
simulate binary decisions from description. Despite this difference,
we can interpret the first mechanism as a special case of the second
one, because its importance distribution (Equation 11) compares
the utility of the prospect’s outcomes against the average utility of
alternative actions. Hence, UWS always overweights events that
entail a large difference between the utility of the considered
action and some alternative. The frequency with which a state has
been experienced or its stated probability also influence how often
it will be sampled. Thus, impossible and highly improbable states
are generally unlikely to be sampled. However, states with high
differential utility are sampled more frequently than is warranted
by how often they have been experienced or their stated probabil-
ity. This increases the probability that improbable states with
extreme differential utility will be considered. We support the

proposed mechanism by showing that it can capture people’s
memory biases for extreme events, the overestimation of the
frequency of extreme events, biases in decisions from description,
and biases in decisions from experience.

Biases in Frequency Judgment Confirm
Predictions of UWS

If people remembered the past as if they were sampling from the
UWS distribution (Equation 11), they would recall their best
experience and their worst experience much more frequently than
an unremarkable one (cf. Madan et al., 2014). If people relied on
such a biased memory system to estimate frequencies and assess
probabilities, then their estimate f̂k of the frequency fk � p(ok) of
the event ok would be

f̂k �
�i�1

s wi · �(oi � ok)

�i�1
s wi

, wi � 1
|u(oi) | , oi � q̃, (22)

where q̃�o� 	 p�o� · |u�o� | is the utility-weighted sampling distri-
bution. Since q̃ overrepresents each event ok proportionally to its

extremity |u(ok) � u� | , that is
q̃�ok�
p�ok�

	 |u�ok� � ū | , we predict that

people’s relative overestimation f̂
fk

is a monotonically increasing
function of the event’s extremity |u(ok) � u� | . Formally, the bias
(Equation 6) of utility-weighted probability estimation (Equation
22) implies that the relative amount by which people overestimate

an event’s frequency (i.e.,
f̂k � fk

fk
) should increase with the event’s

extremity ( |u(ok) | � u� ), according to

f̂k � fk

fk
� 1

s�c � 1
|u(ok) � ū | �, (23)

where c is an upper bound on people’s relative overestimation.
This predicts that people should overestimate the frequency of an
event more the more extreme it is regardless of its frequency. In
this section, we test this prediction against people’s judgments: we
first report an experiment suggesting that frequency overestima-
tion increases with perceived extremity, and then we show that
UWS can capture the finding that overestimation occurs regardless
of the event’s frequency (Madan et al., 2014).

Frequency Overestimation Increases With
Perceived Extremity

Lichtenstein et al. (1978) and Pachur, Hertwig, and Steinmann
(2012) found that people’s estimates of the frequencies of lethal
events are strongly correlated with how many instances of each
event they can recall. Furthermore, Lichtenstein et al. (1978) also
found that overestimation was positively correlated with the num-
ber of lives lost in a single instance of each event, the likelihood
that an occurrence of the event would be lethal, and the amount of
media coverage it would typically attract. We hypothesize that
extremity-weighted memory encoding contributed to these effects.
If this were true, then overestimation should increase with per-
ceived extremity. Here, we test this prediction of UWS in a new
experiment that measures perceived extremity and correlates it
with the biases in people’s frequency estimates.

Method. We recruited 100 participants on Amazon Mechan-
ical Turk. Participants received a baseline payment of $1.25 for
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about 30 min of work. Participants were asked to estimate how
many American adults had experienced each of 39 events in 2015
as accurately as possible and accurate frequency estimation was
incentivized by a performance dependent bonus of up to $2. In
addition, participants judged each event’s valence (good or bad)
and extremity (0 � neutral; 100 � extreme). The 39 events
comprised 30 stressful life events from Hobson et al. (1998), four
lethal events (suicide, homicide, lethal accidents, and dying from
disease/old age), three rather mundane events (going to the mov-
ies, headache, and food-poisoning), and two attention-checks. As a
reference, participants were told the total number of American
adults and how many of them retire each year.

To assess overestimation we compared our participants’ esti-
mates to the true frequencies of the events according to official
statistics.2 The complete experiment can be inspected online.3 Out
of 100 Participants 22 failed one or more attention checks (number
of Americans elected president, number of Americans who slept
between 2 hr and 10 hr at least once) and were therefore excluded.

Results and discussion. A significant rank correlation4 be-
tween the average extremity judgments of the 37 events and

average relative overestimation
f̂k�fk

fk
confirmed our model’s pre-

diction (Spearman’s 	 � 0.46, p � .0045, see Figure 1), and we
observed the same effect at the level of individual judgments
(Spearman’s 	 � 0.14, p � 10�12). The frequencies of the five
most extreme events, that is murder (93.3%), suicide (92.6%
extreme), dying in an accident (90% extreme), the death of one’s
partner (86% extreme), and suffering a major injury or serious
illness (85% extreme) were overestimated by a factor of 159 (p �
.0001), 9 (p � .0026), 35 (p � .0035), 1.01 (p � .03), and �0.22
(p � .25) respectively. By contrast, the prevalences of the five
least extreme events, that is headache (20% extreme), change in
work responsibilities (21% extreme), getting a traffic ticket (26%
extreme), moving flat (26% extreme), and career change (32%
extreme) were underestimated by 4% (p � .42), 1% (p � .95),
10% (p � .52), 52% (p � .0001), and 24% (p � .0211) respec-
tively. Like Rothman et al. (1996), we found that people overes-

timate the frequency of suicide (overestimated by 927%) more
heavily than the frequency of divorce (overestimated by 27%).
According to our theory, this is because suicide is perceived as
more extreme than divorce (92.6% extreme vs. 59% extreme).

Furthermore, we found that the effect of extremity on overesti-
mation also holds across the three categories the events were
drawn from (see Figure 2): People significantly underestimated the
frequency of mundane events, t(233) � �3.66, p � .0003, and
overestimating the frequency of stressful life events, t(2338) �
2.02, p � .0433 and lethal events, t(311) � 5.46, p � 10�7.
Two-sample t tests confirmed that relative overestimation was
larger for stressful life events than for mundane events, t(2571) �
3.16, p � .0016 and even larger for lethal events t(544) � 12.70,
p � 10�15). Figure 2 illustrates that overestimation and perceived
extremity increased together.

Although people’s judgments were biased for the events studied
here, there are many quantities, such as the length of poems, for
which people’s predictions are unbiased (Griffiths & Tenenbaum,
2006). This is consistent with UWS because unlike monetary gains
and losses they impart no (dis)utility on their observer. For in-
stance, hearing that a poem is 8 lines long carries virtually the
same utility as hearing that another poem is 25 lines long. Hence,
for such quantities, UWL would predict effectively unbiased mem-
ory encoding, recall, and prediction. Our theory’s ability to differ-
entiate situations where human judgment is biased from situations
where it is unbiased speaks to its validity.

In conclusion, the experiment confirmed our theory’s prediction
that an event’s extremity increase the relative overestimation of its
frequency. However, additional experiments are required to dis-
entangle the effects of extremity and low probability, because
these two variables were anticorrelated (	(36) � �0.67, p �
.0001). To address this problem, we examined our model’s pre-
dictions using two published studies that kept frequency constant
across events (Madan et al., 2014).

UWS Captures That Extreme Events Are
Overestimated Regardless of Frequency

The results reported above supported the hypothesis that people
overestimate the frequency of extreme events, but most extreme
events in that experiment were also rare. Therefore our findings
could also be explained by postulating that people overestimate
extreme events only because they are rare (Hertwig, Pachur, &
Kurzenhäuser, 2005). This possibility is supported by empirical
evidence for regression to the mean effects in frequency estimation
(Attneave, 1953; Hertwig et al., 2005; Lichtenstein et al., 1978;
Zhang & Maloney, 2012). Yet, extremity per se also contributes to
overestimation: Madan et al. (2014) found that people overesti-
mate the frequency of an extreme event relative to a nonextreme
event even when both were equally frequent. The hypothesis that
people overestimate the frequency of extreme events because those
events are rare cannot account for this finding, but utility-weighted

2 This data was obtained from Hobson and Delunas (2001), www.cdc
.gov/nchs/fastats/deaths.htm, www.mpaa.org/resources/3037b7a4-58a2-41
09-8012-58fca3abdf1b.pdf,www.cdc.gov/foodborneburden/, and Rasmus-
sen, Jensen, Schroll, and Olesen (1991).

3 http://cocosci.berkeley.edu/mturk/falk/freq_estimation_revised.html.
4 We analyzed this relationship using Spearman’s rank correlation, since

we cannot assume that people’s extremity judgments follow a ratio scale.
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Figure 1. Relative overestimation (� f̂k � fk� ⁄ fk) increases with perceived
extremity ( |u(ok) | ). Each circle represents one event’s average ratings.
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sampling can. To demonstrate this, we simulated the experiments
by Madan et al. (2014) using utility-weighted sampling.

In the first experiment by Madan et al. (2014) participants
repeatedly chose between two doors. Each door probabilistically
generated one of two outcomes, and different doors were available
on different trials. There were a total of four doors generating a
sure gain of �20 points, a sure loss of �20 points, a risky gain
offering a 50/50 chance of �40 or 0, and a risky loss offering a
50/50 chance of 0 or �40 points. In most trials participants either
chose between the risky and the sure gain (gain trials) or between
the risky and the sure loss (loss trials). After each choice, partic-
ipants were shown the number of points earned, and they received
no additional information about the options. After 6 blocks of 48
such choices participants were asked to estimate the probability
with which each door generated each of the possible outcomes and
to report the first outcome that came to their mind for each of the
four doors. In their second experiment Madan et al. (2014) shifted
all outcomes from Experiment 1 by �40 points.

We estimated the two parameters of the UWS model (i.e., the
number of samples s and the noisiness �ε of the utility function)
from the choice frequencies reported by Madan et al. (2014) using
the maximum-likelihood principle. Although participants had to
learn the outcome probabilities from experience, the model devel-
oped so far assumes known probabilities. We thus restricted our
analysis to the last block of each experiment. For each experiment,
our model defines a likelihood function over the number of risky
choices in gain trials and the number of risky choices in loss trials.
We maximized the product of these likelihood functions with
respect to our model’s parameters using grid search over possible
numbers of samples and global optimization with respect to �ε.
The resulting parameter estimates were s � 4 samples and �ε �
0.05.

With these parameters, utility-weighted sampling correctly pre-
dicted that extreme outcomes come to mind first more often than

the equally frequent moderate outcomes; see Table 1. Next, we
simulated people’s frequency estimates according to Equation
22. UWS correctly predicted that people overestimate the fre-
quency of extreme outcomes relative to the equally frequent
moderate outcome; see Table 1. In addition, UWS captured that
participants were more risk-seeking for gains than for losses
(see Table 2), and a later section investigates this phenomenon
in more detail.

Summary and Discussion

The findings presented in this section provide strong support for
our hypothesis that utility-weighting is the reason why people
overrepresent extreme events: First, Experiment 1 showed that
there is a significant correlation between an event’s utility and the
degree to which people overestimate its frequency. Second,
the data from Madan et al. (2014) rule out the major alternative
explanation that people overestimate the frequency of extreme
events only because they are rare and also demonstrate that the
overestimation is mediated by a memory bias for events with
extreme utility. Furthermore, we found that the adaptive bias
predicted by our theory exists not only in decision making but also
in frequency estimation and memory.

A parsimonious explanation for these three phenomena could be
that the overrepresentation of extreme events results from a known
bias in learning: emotional salience enhances memory formation
(Cruciani et al., 2011). Although overestimation has been previ-
ously explained by high “availability” of salient memories (Tver-
sky & Kahneman, 1973), our theory specifies what exactly the
availability of events should correspond to—namely their impor-
tance distribution q̃ (Equation 13)—and why this is useful. Our
empirical findings were consistent with utility-weighted sampling
but inconsistent with the hypothesis that the bias in frequency
estimation is merely a reflection of the regression to the mean
effect (Hertwig et al., 2005). Although alternative accounts of why
people overestimate the frequency of extreme events, such as
selective media coverage (Lichtenstein & Slovic, 1971), can ex-
plain the overestimation of certain lethal events, they cannot ac-
count for the data of Madan et al. (2014). Thus at least part of the
overestimation of extreme events appears to be due to utility-
weighted sampling. Hence, an event’s extremity may sway peo-
ple’s decisions by increasing their propensity to remember it, and
this is clearly distinct from extremity’s potential effects on the
subjective utility of anticipated outcomes (Bell, 1985; Loomes &
Sugden, 1982, 1984, 1986).

Table 1
Utility-Weighted Sampling Simulation of People’s Memory
Recall and Frequency Estimates After the Experiments by
Madan et al. (2014)

Phenomena
Extreme gain

vs. neutral
Extreme loss

vs. neutral

Which event comes to mind first?
Experiment 1 64.5% vs. 35.5% 71% vs. 29%
Experiment 2 70.0% vs. 30% 72.6% vs. 27.4%

Estimated frequency of . . .
Experiment 1 83.0% vs. 17.0% 87.5% vs. 12.5%
Experiment 2 87.5% vs. 12.5% 90.0% vs. 10.0%

Mundane (avg.) Stressful (avg.) Lethal (avg.)
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Figure 2. Judged frequency and extremity by event type. The asterisks
indicates that the difference between the estimated and true frequency was
statistically significant (� p � .05 and �� p � .001).
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Our model’s predictions are qualitatively consistent with the
data of Madan et al. (2014) but often more extreme. This differ-
ence might result from the idealistic assumption that there is no
forgetting. We revisit this issue with a more realistic learning
model later in the article.

Biases in Decisions From Description

According to decision theory, an event’s probability determines
its weight in decision making under uncertainty. Therefore, the
biased probability estimates induced by utility-weighted sampling
suggest that people should overweight extreme events in decisions
under uncertainty. We will test this prediction in the domain of
decisions from experience. Since this will require a model of
learning, we model decisions from description as an intermediate
step toward building a model of decisions from experience.

In the decisions from description paradigm participants choose
between gambles that are described by their payoffs and outcome
probabilities (Allais, 1953; Kahneman & Tversky, 1979). Typi-
cally participants make binary choices between pairs of gambles or
between a monetary gamble and a sure payoff. Although people
could, in principle, make these decisions by computing and com-
paring the gamble’s expected values, ample empirical evidence
demonstrates that they do not. Instead, people might reuse their
strategies for everyday decisions. Everyday decisions are usually
based on memories of past outcomes in similar situations. Hence,
if people reused their natural decision strategies, then their deci-
sions from description should be affected by the availability biases
that have been observed in memory recall and frequency judg-
ments. Our section on utility-weighted learning in decision from
experience provides a precise, mechanistic account of how these
biases arise from biased memory encoding. Here, we assume that
similar mechanisms are at play in decisions from description. For
instance, it is conceivable that the high salience of large differen-
tial payoffs in decisions from description (Bordalo et al., 2012)
attracts a disproportionate amount of people’s attention, making
them more memorable, and increasing the frequency with which
they will be considered. We think that such mechanisms could
roughly approximate the utility-weighting prescribed by our
model, at least for simple gambles whose outcomes are displayed
appropriately.

In this section, we therefore apply UWS to decisions from
description, validate the resulting model on the data from the
Technion choice prediction competition (Erev et al., 2010), and
demonstrate that it can capture three classic violations of expected
utility theory.

Validation on Decisions From Description

We validated the utility-weighted sampling model of binary
choices (Equations 18–21) with the stochastic normalized utility

function defined in Equation 16 against people’s decisions from
description in the Technion choice prediction tournament (Erev et
al., 2010). There are many factors that influence people’s re-
sponses that are outside the scope of our model. These include
accidental button presses, mind-wandering, misperception, and the
occasional use of additional decision strategies that might be well
adapted to the specific problems to which they are applied (Lieder
& Griffiths, 2015, in press). We therefore extended UWS to allow
for an unknown proportion of choices (prandom) that are determined
other factors. We model the net effect of those choices as choosing
either option with a probability of 0.50.

We fitted the number of samples s, the noisiness �ε of the utility
function, and the percentage of trials in which people choose at
random to the training data of the Technion choice prediction
competition. The maximum likelihood estimates of these model
parameters were s � 10 samples, �ε � 0.1703, and prandom � 0.07.
We then used these parameter estimates to predict people’s choices
in the decision problems of the test set of the Technion choice
prediction competition. Figure 3 shows our model’s predictions
and compares them to people’s choice frequencies. On average
across the 60 problems, people chose the risky option about
46.75 
 3.98% of the time and the UWS model chose the risky
option about 48.92 
 2.56% of the time. This difference was not
statistically significant, t(59) � �1.03, p � .31 suggesting that the
predictions of UWS were unbiased. Although there was no bi-
as—on average—the predictions of UWS were regressed toward
50/50 compared with people’s choice frequencies: On problems
where people were risk-seeking UWS chose the risky option less
often than people (66.11% vs. 79.20%, t(24) � �6.48, p � .0001).
But on problems where people were risk-averse, UWS chose the
risky option more often than people (35.54% vs. 21.97%, p �
.0001).

Table 2
Utility-Weighted Sampling (UWS) Captures People’s Risk
Preferences in the Experiments by Madan et al. (2014)

Risky
choices in . . . Gain trials Loss trials

Experiment 1 UWS: 54%, people: 45% UWS: 36%, people: 35%
Experiment 2 UWS: 60%, people: 55% UWS: 31%, people: 14%
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Figure 3. Predictions of Utility-Weighted Sampling (UWS) on the test
set of the Technion choice prediction tournament for decisions from
description according to the parameters estimated from the training set.
Each data point reports the frequency with which UWS (horizontal axis)
versus people (vertical axis) chose the risky option in one of the 60
decision problems of the Technion competition, and the solid line is the
identity line.
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Our model predicted people’s choice frequencies more accu-
rately than cumulative prospect theory (CPT; Tversky, & Kahne-
man, 1992) or the priority heuristic (Brandstätter, Gigerenzer, &
Hertwig, 2006): Its mean squared error (MSDUWS � 0.0266) was
significantly lower than for cumulative prospect theory (MSDCPT �
0.0837, t(59) � �5.4, p � .001) or the priority heuristic
(MSDpriority � 0.1437, t(59) � �4.9, p � .001). Furthermore, the
predicted risk preference agreed with people’s risk preferences in
87% of the trials (CPT: 93%, priority heuristic: 81%) and the
predicted choice frequencies were highly correlated with people’s
choice frequencies (rUWS (59) � 0.88, p � 10�15 vs. rCPT � 0.86
and rpriority � 0.65). Our model’s predictive accuracy was similar
to those of the best existing models, namely stochastic cumulative
prospect theory with normalization (r � .92, MSD � 0.0116) and
Haruvy’s seven parameter logistic regression model that won the
competition (r � .92, MSD � 0.0126), although the differences
were still statistically significant, t(59) � 3.5, p � .001 and t(59 �
3.97, p � .001). In addition to performing about as well as the best
existing models our model is distinctly principled: UWS is the
only accurate mathematical process model that is derived from
first principles. All alternative models that perform similarly well
were tailored to capture known empirical phenomena or fail to
specify the mechanisms of decision making.

Having estimated our model’s parameters and validated it, we
now proceed to demonstrate that it can explain three paradoxes in
risky choice, namely the Allais paradox (Allais, 1953), the fourfold
pattern of risk preferences (Tversky & Kahneman, 1992), and
preference reversals (Lichtenstein & Slovic, 1971).

The Allais Paradox

In the two lotteries L1(z) and L2(z) defined in Table 3 the chance
of winning z dollars is exactly the same. Yet, when z � 2,400 most
people prefer lottery L2 over lottery L1, but when z � 0 the same
people prefer L1 over L2. This inconsistency is known as the Allais
paradox (Allais, 1953).

We simulated people’s choices between both pairs of lotteries
according to utility-weighted sampling with the parameters esti-
mated from the Technion training set. To do so, we computed the
probability p and utility difference �U for each possible pair of
outcomes of the first lottery L1 and the second lottery L2. Since
the outcomes of the two lotteries are statistically independent, the
probability that the first lottery yields outcome O1 whereas the
second lottery yields O2 is P�O1� · P�O2�. To apply UWS to predict
people’s choices between the two lotteries, we determined all
possible values of the differential utility �U and their respective
probabilities. For instance, when z � 0, then the possible differ-
ential utilities are 0, �u(2,400), u(2,500) � u(2,400), and u(2,500)
(see Tables 3 and 4). In this case, �U is –u(2,400) if the first or the
third outcome is drawn for the first lottery and the second outcome is

drawn for the second lottery. The probability of the first scenario is p1

· p2 � 0.66 · 0.34 and the probability of the second scenario is p3

· p2 � 0.01 · 0.34; hence the probability of �U � �u(2,400) is 0.67
· 0.34. Next, we computed the simulation frequency q̃(�U) which
is proportional to p��U� · |�u | . For instance, in this example,
��q̃��U � �u�2,400��� 	 0.67 · 0.34 · u�2,400� and normalizing
this probability distribution yields ��q̃��U � �u�2,400��� � 0.5
suggesting that this extreme eventuality would occupy half of the
decision maker’s mental simulations even though its probability is
less than 23%. This corresponds to overweighting this event by a
factor of 2.19. Table 4 presents these numbers for all differential
utilities possible with z � 2,400 or z � 0.

Our simulations with UWS predicted people’s seemingly incon-
sistent preferences in the Allais paradox. For the first pair of
lotteries (z � 2,400), UWS preferred the second lottery to the first
one, choosing L2 55.66% of the time and L1 only 44.34% of the
time. But for the second pair of lotteries (z � 0), UWS choose the
first lottery more often than the second one (50.38% vs. 49.62%).
Table 4 shows how our theory explains why people’s preferences
reverse when z changes from 2400 to 0: According to the impor-
tance distribution q̃ (Equation 13), people overweight the event for
which the utility difference between the two gambles’ outcomes
(O1 and O2) is largest (�U � u(O1) � u(O2)). Thus when z �
2400, the most overweighted event is the possibility that gamble L1

yields o1 � 0 and gamble L2 yields o2 � 2400 (�U � �u(2400));
consequently the bias is negative and the first gamble appears
inferior to the second (���Ûq̃,2

IS � � �0.0294 which corresponds to
$–75.54). But when z � 0, then L1 yielding o1 � 2500 and L2

yielding o2 � 0 (�U � �u(2500)) becomes the most over-
weighted event making the first gamble appear superior
(���Ûq̃,2

IS � � �0.0013 which corresponds to $3.25). Our model’s
predictions are qualitatively consistent with the empirical findings
by Kahneman and Tversky (1979) but less extreme; this is primar-
ily because fitting the model to the data from the Technion choice
prediction Tournament led to large number of samples (s � 10)
and the predicted availability biases decrease with the number of
samples; for a smaller number of samples, the model predictions
would have been closer to the empirical data.

The Fourfold Pattern of Risk Preferences

Framing outcomes as losses rather than gains can reverse peo-
ple’s risk preferences (Tversky & Kahneman, 1992): In the domain
of gains people prefer a lottery (o dollars with probability p) to its
expected value (risk seeking) when p � .5, but when p � .5 they

Table 4
Utility-Weighted Sampling Explains the Allais Paradox

Case �U p ��q̃� ��q̃� ⁄ p

0 .66 0 0
Z � 2,400: u(2,500) � u(2,400) .33 .58 1.8

�u(2,400) .01 .42 42
0 .66 · .67 0 0

z � 0: �u(2,400) .67 · .34 .5 2.19
u(2,500) � u(2,400) .33 · .34 .01 .08
u(2,500) .33 · .66 .49 2.26

Note. The agent’s simulation yields �U � �u with probability
q̃��u� 	 p��u� · |�u | where p is �u’s objective probability.

Table 3
The Allais Gambles: Participants Choose Between Lottery L1

and Lottery L2 for z � 2,400 Versus z � 0

Lottery (o1, p1) (o2, p2) (o3, p3)

L1(z) (z, .66) (2,500, .33) (0, .01)
L2(z) (z, .66) (2,400, .34)
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prefer the expected value (risk aversion). In contrast, in the domain
of losses, people are risk averse for p � .5 but risk seeking for p �
.5. This phenomenon is known as the fourfold pattern of risk
preferences. Formally, decision makers are risk seeking when they
prefer a gamble (p, o; 0) which yields $o with probability p and
nothing otherwise to its expected value p · o dollars, and risk
averse if they prefer receiving the expected value for sure to
playing the gamble. We therefore determined the risk preferences
predicted by utility-weighted sampling by simulating choices be-
tween such gambles and their expected values. Concretely, we
used the gambles (p, o; 0) for 0 � p � 1 and �1000 � o � 1000
and applied UWS with the parameters estimated from the Tech-
nion choice prediction tournament. Appendix C illustrates how
utility-weighted sampling makes these decisions and how this
leads to inconsistent risk preferences.

We found that utility-weighted sampling predicts the fourfold
pattern of risk preferences (Tversky & Kahneman, 1992); see
Figure 4. To understand how utility-weighted sampling explains
this phenomenon, remember that it estimates the expected value of
the differential utility �U by sampling from the importance dis-
tribution q̃��u� 	 |�u | · p��u�. The differential utility of choosing
a gamble that yields o with probability p over its expected value
p · o is

�U � u(o) � u(p · o) with probability p
�u(p · o) with probability 1 � p

. (24)

Utility-weighted sampling thus overweights the gain/loss o of the
lottery if p is small, because then |u�o� � u�p · o� | 
 |u�p · o� | .
Conversely, it underweights the gain/loss o if p is large, because
then |u�o� � u�p · o� |  |u�p · o� | . Concretely, when choosing
between a two-outcome gamble and its expected value, UWS
simulates the outcome of the gamble as if winning and losing were
equally probable even when the probability of winning is much
larger or much smaller than 0.5 (see Appendix C). On top of
this oversimulation of the more extreme outcome, the noise term of

the utility function (Equation 16) stochastically flips the sign of the
differential utilities of some of the simulated outcomes. When the
probability of winning is close to 0 or 1, then this happens almost
exclusively for the outcome whose differential utility is closer to
zero. Combined with the oversimulation of the more extreme
outcome this asymmetry renders the decision maker’s bias positive
(risk-seeking) for improbable gains and probable losses but neg-
ative (risk-aversion) for probable gains and improbable losses (see
Figure 4). Appendix C elaborates this explanation with detailed
worked examples.

In everyday life the fourfold pattern of risk preferences mani-
fests itself in the apparent paradox that people who are so risk-
averse that they buy insurance can also be so risk-seeking that they
play the lottery. Our simulations resolved this apparent contradic-
tion: First, we simulated the decision whether or not to play the
Powerball lottery.5 The jackpot is at least $40 million, but the odds
of winning it are less than 1:175 million. In brief, people pay $2 to
play a gamble whose expected value is only $1. We simulated how
much people would be willing to pay for a ticket of the Powerball
lottery according to UWS. We found that UWS overestimates the
value of a lottery ticket by more than a factor of 2 more than 36%
of the time. Thus, a person who evaluates lottery tickets often
should consider them underpriced about one third of the time.
Applied to choice, UWS predicts that people buy lottery tickets
almost every second time they consider it (PUWS (buy lottery
ticket) � 0.497), because they overrepresent the possibility of
winning big. Next, we applied UWS to predict how much the same
people would be willing to pay for insurance. Our simulation
assumed that the total insured loss follows the heavy-tailed power-
law distribution of debits (N. Stewart et al., 2006) over the range
from $1 to $1,000,000. To simplify the application of UWS to this
continuous distribution, we set the reward expectancy u� to zero and
assumed that the simulation distribution is not affected by noise.
We determined the certainty equivalents of the utility-weighted
sampling estimates of the utility of an insurance against a loss
drawn from this distribution. To do so, we applied the inverse of
the utility function to the UWS estimates of the expected disutility
of the hazard. We found that UWS overestimates the expected
hazard about 80% of time, and it overestimates it by a factor of at
least 2 in 64% of all cases. Therefore, most people should be
motivated to buy insurance even when they just bought a lottery
ticket. The prediction of utility-weighted sampling for whether
people actually decide to buy an overpriced insurance policy are
more moderate, because the high price of insurance makes the
possibility of paying nothing and losing nothing more salient.
Nevertheless, UWS predicts that people would be willing to buy
insurance for 130% of its expected value about 37.3% of the time.
Thus 90% of customers would buy 130% overpriced insurance
after considering at most 5 offers.

Utility-weighted sampling thereby resolves the paradox that
people who are so risk-seeking that they buy lottery tickets can
also be so risk-averse as to buy insurance by suggesting that people
overweight extreme events regardless of whether they are gains (as
in the case of lotteries) or losses (as in the case of insurance).

5 The payoffs and probabilities of this lottery were modeled according to
http://www.calottery.com/play/draw-games/powerball.
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Figure 4. Utility-weighted sampling predicts the fourfold pattern of risk
preferences. The color scale indicates the probability people make the risky
choice as a function of the probability and dollar value of the outcome.
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Preference Reversals

When people first price a risky gamble and a safe gamble with
similar expected value and then choose between them, their pref-
erences are inconsistent almost 50% of the time: most people price
the risky gamble higher than the safe one, but many of them
nevertheless choose the safer one (Lichtenstein & Slovic, 1971).
This inconsistency does not result from mere randomness, as
preference reversals in the opposite direction are rare.

To evaluate whether our theory can capture this inconsistency,
we simulated the pricing of a safe gamble offering an 80% chance
of winning $1 and a risky gamble offering a 40% chance of
winning $2, and the subsequent choice between them according to
UWS with the parameters estimated from the Technion choice
prediction tournament for decisions from description. Since the
largest and the smallest possible outcome are omax � 2 and omin �
0, respectively, the utility function from Equation 16 becomes
u�o� � o

2 � ε with ε � ��0, � � 0.17�.
We assumed that people price a gamble by estimating its ex-

pected utility gain �Ūq,s
IS according to Equation 14 and then convert

the resulting utility estimate into its monetary equivalent. Plugging
the payoffs and outcome probabilities of the safe gamble in to
Equation 14 reveals that, for the safe gamble, winning (o � 1) and
losing (o � 0) would be simulated with the frequencies

qsafe(o � 1) � 0.8 · |u($1) |
0.8 · |u($1) |� 0.2 · |u($0) | , and (25)

qsafe(o � 0) � 0.2 · |u($0) |
0.8 · |u($1) |� 0.2 · |u($0) | , (26)

respectively. For the risky gamble the possibility of winning is
overrepresented more:

qrisky(o � 2) � 0.4 · |u($2) |
0.4 · |u($2) |� 0.6 · |u($0) | , and (27)

qrisky(o � 0) � 0.6 · |u($0) |
0.4 · |u($2) |� 0.6 · |u($0) | . (28)

Each simulated decision maker sampled 10 possible outcomes. We
then applied Equation 14 to translate the 10 samples from qsafe into
the UWS estimate of the expected utility gain of playing the safe
gamble (�ūqsafe,10

IS ) and the 10 samples from qrisky into the UWS
estimate of the expected utility gain of playing the risky gamble
(�ūqrisky,10

IS )). Finally, we converted each estimated utility gain into
the equivalent monetary amount m by inverting the utility function
u without adding any noise, that is

mrisky � u(�1)��ūqrisky,10
IS � � (omax � omin) · �ūqrisky,10

IS (29)

msafe � u(�1)��ūqsafe,10
IS � � (omax � omin) · �ūqsafe,10

IS . (30)

Each value of mrisky corresponds to one participant’s judgment of
the fair price for the risky gamble and likewise for the values of
msafe.

To simulate choice, we applied the UWS model for binary
decisions from description (Equations 20–21) with the parameters
estimated from the Technion choice prediction tournament. To
choose between the risky versus the safe gamble, this model
estimates the expected differential utility ��u�Orisky� � u�Osafe��
directly instead of estimating the gambles’ expected utilities
��u�Orisky�� and ��u�Osafe�� separately. Consequently, it over-

weights pairs of outcomes whose utilities are very different instead
of individual outcomes whose utilities are far from 0. Concretely,
it simulates pairs of outcomes (i.e., one outcome for the risky
gamble and one outcome for the safe gamble) according to the
distribution q� defined in Equation 20, which weights their joint
probability by the absolute value of their difference in utility. The
differential utilities �u1, . . . , �u10 of the simulated outcome pairs
are then translated into an estimate of the difference between the
expected utility of the risky gamble versus the safe gamble ac-
cording to Equation 21. If the resulting decision variable �Ûq�,10

IS is
positive, the simulated decision maker chooses the risky gamble, if
it is negative they choose the safe gamble, and if it is 0 then they
choose randomly.

Since the utilities u(o) that drive the overweighting of ex-
treme outcomes are stochastic (Equation 16), we conducted 100
000 simulations to average over a large number of utility-
weighted sampling distributions q. Each simulation generated
one price for the safe gamble, one price for the risky gamble,
and one simulated choice between the two. At the beginning of
each simulation, the utilities u(0), u(1), and u(2) were drawn
from ��� � o

2 , � � 0.17� for each possible outcome o � {0, 1,
2} and plugged into Equations 25–28 to yield the distributions
the decision maker would sample from in that simulation.
Within each simulation, the sampled outcomes were evaluated
by independent applications of the noisy utility function (Equa-
tion 16). Hence, even when the same outcome was sampled
multiple times in a simulation, its subjective utility could be
different every time.

UWS predicted that 42% of participants should reverse their risk
preference from pricing to choice. In 66% of these reversals the
model prices the risky gamble higher but choose the safe one. As
a result, utility-weighted sampling typically prices the risky gam-
ble higher than the safe gamble (67% of the time), but it chooses
the safe gamble almost every second time (49% of the time). The
rational decision mechanism of utility-weighted sampling weights
events differently depending on whether it is tasked to perform
pricing versus choice. Given that its shift in attention is a rational
adaption to the task, the inconsistency between people’s apparent
risk preferences in pricing versus choice is consistent with
resource-rationality.

Although the laboratory experiments that demonstrated the
effects simulated above can be criticized as artificial because
their stakes were low or hypothetical, the overweighting of
outcomes with extreme differential utility has also been ob-
served in high-stakes, financial decisions whose outcomes do
count (Post, Van den Assem, Baltussen, & Thaler, 2008), and
UWS can capture those effects as well (see Section “Deal or No
Deal: Overweighting of Extreme Events in Real-Life High-
Stakes Economic Decisions” of the online supplemental mate-
rial).

Summary

In this section, we have shown that utility-weighted sampling
accurately predicts people’s decisions from description across a
wide range of problems including those that elicit inconsistent risk
preferences. Our utility-weighted sampling model of decisions
from description rests on three assumptions: Its central assumption
is that expected utilities are estimated by importance sampling. In
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addition, we assumed that binary choices from description are
made by directly estimating the differential utility of choosing the
first option over the second option. This assumption was important
to predict the fourfold pattern of risk preferences, preference
reversals, and the Allais paradox. Finally, we assumed that the
mapping from payoffs to utilities is implemented by efficient
coding. This assumption is not critical to the simulations reported
here, but it will become important in our simulations of decisions
from experience in the next section.

Overweighting of Extreme Events in Decisions
From Experience

In decisions outside the laboratory we are rarely given a list of
all possible outcomes and their respective probabilities. Instead,
we have to estimate these probabilities from past experience.
When people learn outcome probabilities from experience their
risk preferences are systematically different than when the proba-
bilities are described to them (Hertwig & Erev, 2009). For in-
stance, people overweight rare outcomes in decisions from de-
scription but tend to underweight them in decisions from
experience (Hertwig, Barron, Weber, & Erev, 2004).

A common paradigm for studying decisions from experience is
repeated binary choices with feedback. In this paradigm, the out-
comes and their probabilities are initially unknown and must be
learned from experience. Madan et al. (2014) discovered an inter-
esting memory bias in this paradigm: people remember extreme
outcomes more often than moderate ones and overestimate their
frequency. Ludvig et al. (2014) showed that people also over-
weight the same extreme outcomes in their decisions when their
probability is 1

2. Above we showed that utility-weighted sampling
can account for the memory biases discovered by Madan et al.
(2014), and in this section we investigate whether utility-weighted
sampling can also account for the corresponding biases in deci-
sions from experience by simulating the experiments by Ludvig et
al. (2014). Our analysis suggests that biased memory encoding
serves to help people make future decisions more efficiently by
making the most important desiderata come to mind first.

Ludvig et al. (2014) conducted a series of four experiments. In
each of the four experiments people made a series of decisions
from experience. For instance, Experiment 1 comprised 5 blocks
with 48 choices each. There were a total of four options: a sure
gain of �20 points, a sure loss of �20 points, a risky gain offering
a 50/50 chance of �40 or 0, and a risky loss offering a 50/50
chance of 0 or �40 points. In most trials participants either chose
between the risky and the sure gain (gain trials) or between the
risky and the sure loss (loss trials). After each choice subjects were
shown the number of points earned, and they received no addi-
tional information about the options. Experiments 2–4 used dif-
ferent outcomes but were otherwise similar. In Experiment 2 the
absolute values of all outcomes of Experiment 1 were shifted by 5
points. In Experiment 3 the gain and loss trials were supplemented
by extreme gain trials and extreme loss trials whose outcomes
were double the outcomes in Experiment 1. Experiment 4 had a
loss condition in which all outcomes were losses (4L) and a gain
condition in which all outcomes were gains (4G). Both conditions
comprised risky gambles in which only the high outcome was
extreme (HX), gambles in which only the low outcome was

extreme (LX), and gambles in which both outcomes were extreme
(BX).

To simulate these experiments, we assumed that Ludvig et al.’s
participants had learned the outcome probabilities in the first four
blocks and modeled their choice frequencies in the final block of
each experiment. We can therefore model each individual decision
as the choice between two lotteries each of which is defined by the
value of the high outcome ohigh, the probability phigh of receiving
it, and the low outcome olow:

l1 � �o1
high, p1

high, o1
low� (31)

l2 � �o2
high, p2

high, o2
low�. (32)

We model utility-weighted sampling as simulating s possible out-
comes of each action a by sampling from the importance distri-
bution defined in Equation 11:

ô1
(a), · · · , ôs

(a) � q(o |a) 	 p(o |a) · |u(o) � ū | , (33)

where u� is the average outcome experienced by the participant.
The simulated utilities are then combined into estimates of each
action’s expected utility gain according to Equation 12, and the
option with the highest expected utility gain estimate is chosen.
Our model defines the likelihood of individual choices in terms of
two parameters: the number of samples s, and the noise variance �ε

2

of the brain’s representation of utilities. We estimated these pa-
rameters from the choice frequencies in the final blocks of each
condition of Experiments 1–4 by the maximum-likelihood
method.

The results of fitting our model to the data of Ludvig et al. (see
Figure 5) revealed that utility-weighted sampling can capture the
effects in all of the experiments with a single set of parameters
(i.e., s � 2 samples, and a noise standard deviation of �� � 0.65)
and the fit is robust to small changes in these parameters. Most
importantly, utility-weighted sampling predicts that people are
more risk seeking when the extreme outcome is high than when the
extreme outcome is low. This explains why participants were more
risk seeking for gains than for losses (Experiments 1–2). Experi-
ment 3 combined trials in which the outcomes were twice the
outcomes in Experiment 1 (3X) with the original trials from
Experiment 1 (3NX). Our model correctly predicted the two main
effects: more risk seeking on extreme gain trials than on extreme
loss trials (3X) and a substantially smaller difference in risk
seeking between their nonextreme counterparts (3NX).

UWS also captured the finding that the effect for the nonex-
treme outcomes is substantially smaller than in Experiment 1 even
though the options were identical. According to our model, the
context of the extreme outcomes in Experiment 3 suppresses the
difference between the nonextreme gain and loss trials, because
each outcome is divided by the range of all outcomes that need to
be represented; see Equation 16. Since the range of outcomes is
twice as large in Experiment 3 than in Experiment 1, the difference
between the rewards of the nonextreme outcomes in Experiment 3
is only half as large as in Experiment 1. Consequently the noise in
the reward signals can overturn the signal in Experiment 3NX
more often than in Experiment 1. For Experiment 4 utility-
weighted sampling correctly predicted more risk seeking when the
high outcome was extreme and the low outcome was moderate
(HX; prisky choice � 0.61) than vice versa (LX; prisky choice � 0.39),
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and an intermediate amount of risk seeking when both outcomes
were extreme (BX, prisky choice � 0.49). Utility-weighted sampling
predicted this pattern of risk preferences regardless of whether all
outcomes were gains (Experiment 4G) or all outcomes were losses
(Experiment 4L). Utility-weighted sampling predicts all of these
effects from the assumption that the brain’s simulation mechanism
is biased toward outcomes with extreme utility. Future models
might be able to achieve a better fit, but to our knowledge utility-
weighted sampling is the only theory to date that captures at least
the qualitative effects observed by Ludvig et al. (2014).

In the experiments by Ludvig et al. (2014) all outcome proba-
bilities were equal to 0.5. In prospect theory (Kahneman & Tver-
sky, 1979) probability weighting only depends on the magnitude of
the probability. Hence, it cannot overweight the 50% chance of
one event and underweight the 50% chance of the other event at
the same time. UWS, by contrast, can explain the effects, because
it predicts that extreme events will always be overweighted re-
gardless of their probability. This highlights a critical difference
between UWS and prospect theory: In prospect theory over- versus
underweighting depends on the value of the probability but is
independent of the utility. By contrast, in UWS the over- or
underweighting is determined by the outcome’s utility but is
independent of its probability. Cumulative prospect theory (Tver-
sky & Kahneman, 1992) captures the effect of extremity on over-
weighting in principle, but it doesn’t capture this effect when there
are only two possible outcomes.

To apply our theory to the empirical data, we had to choose a
utility function. We chose the stochastic normalized utility func-
tion defined in Equation 16 because of its neuroscientific under-
pinnings and its ability to explain context-sensitive preferences in
value-based decision making (Summerfield & Tsetsos, 2015).
Concretely, UWS combined with a context-insensitive utility func-
tion, such as a simple linear function of the outcome, or the
concave utility function of prospect theory, would be unable to
explain why people’s preference for the risky gamble �40/0 over
the safe option �20 is lower in Experiment 3 than in Experiment
1 even though the choices are exactly the same. In addition to the
normalization by the dynamic range, the noise term is also neces-
sary, because otherwise any scaling of the utility function is

canceled out by the normalization of the sampling distribution.
Therefore, there appears to be no simpler or more conventional
utility function that can explain the qualitative features of the data
of Ludvig et al. (2014) than the normalized stochastic utility
function defined in Equation 16. Given this utility function, UWS
predicts that the overweighting of the gain (�40) in the choice
between a 50/50 chance to gain 40 or 0 versus 20 for sure in
Experiment 1 would disappear if there were only gain trials so that
the average outcome would be 20 which is exactly in the middle
between 0 and 40.

Utility-Weighted Learning From Experience

So far, we have shown that utility-weighted sampling can cap-
ture biases in frequency judgment, decision making, and memory
recall. Our explanation postulates that the brain samples from an
importance distribution that weights each outcome’s probability by
the absolute value of the extremity of the outcome’s utility, but it
remains unclear whether and how the brain could implement this
mechanism. We have speculated that there may be a common root
to these biases: the enhancement of learning by emotional salience.
Consistent with this mechanism, memory consolidation is en-
hanced when the reward associated with an experience is larger
(Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli,
2006). Adcock et al. (2006) found that this modulation of memory
consolidation is mediated by the release of dopamine from the
ventral tegmental area. The enhancement of learning by emo-
tional salience implies that extreme events, such as the terror-
ism, natural disasters, and traumatic accidents, are engraved
more deeply into our memory than mundane events. A single
extreme experience, such as a traumatic event, in a neutral
context can instill an enduring association that is much stronger
than the association formed with a mundane event that occurred
more frequently in the same context. Based on this idea we
propose a biologically plausible learning mechanism that tunes
neural networks to sample from the importance distribution of
utility-weighted sampling.
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Figure 5. Differential risk preferences in the experiments by Ludvig et al. (2014). Panel A: Observed and
predicted patterns of risk preferences. Panel B: Scatterplot combining all experimental conditions. UWS �
Utility-Weighted Sampling.
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UWS Can Emerge From Reward-Modulated
Associative Plasticity

Utility-weighted sampling can be implemented using a stochas-
tic winner-take-all network (cf. Nessler, Pfeiffer, Buesing, &
Maass, 2013) whose units represent potential outcomes and re-
ceive inputs from units representing the alternatives of the choice
(a). The weight wa,o of connection between the input units repre-
senting alternative a and the output units representing outcome o
encode the strength of the association between alternative a and
outcome o. The weights w thereby determine the relative fre-
quency with which the network simulates each outcome for each
alternative. In this section, we propose a learning rule for the
weights w that tunes the network to simulate outcomes according
to utility-weighted sampling (Equation 33).

We assume that the initial association strengths w are zero, and
that choosing an alternative a and receiving a rewarding outcome
o reinforces their association wa,o. The association strengthens
more the more surprising the outcome is (Courville, Daw, &
Touretzky, 2006). Our model captures this effect by updates that
are proportional to the absolute value of the reward prediction
error PE(o):

wa,o(t � 1)

� (1 � �) · (wa,o(t) � � · |PE(o) | ) if A(t) � a and O(t) � o
(1 � �) · wa,o(t) if A(t) � a and O(t) � o

,

(34)

where A(t) and O(t) are the chosen alternative and the outcome in
trial t, � is the learning rate, and  is the forgetting rate. The reward
prediction error is the difference between the experienced reward
r(o) and reward expectancy r̄�t�:

PE(o) � r(or) � r̄(t), (35)

where r(o(t)) is the subjective utility of outcome o defined in
Equation 16, and r̄�t� is the reward expectancy ū�t� associated with
any trial in the experiment. It can therefore be thought of as a
recency-weighted average over all rewards regardless of the
choices that generated them. We assume that this expectancy is
learned independently from the alternative-outcome associations
by temporal difference learning, that is

ū(t � 1) � ū(t) � � · PE, (36)

where � is a learning rate and the reward prediction error PE is
conveyed by phasic dopamine signals from the ventral tegmental
area to the ventral striatum and the frontal lobe (Niv, 2009). This
concludes the learning part of our model.

To model decision making we assume that the rate at which
units representing alternative a activate units representing outcome
o is proportional to the strength of their connection, that is

P(Ô � o |A � a) �
wa,o

�o�1
n wa,o

	 wa,o (37)

The learning rule (Equation 34) increases the weight wa,o with
probability p(o |a) by an increment proportional to |PE(o) | . There-
fore, the probability that outcome o will be simulated when con-
sidering action a (i.e., P�Ô � o �A � a�) converges to
p�o �a� · |PE�o� | � p�o �a� · |u�o� � ū | 	 qUWS, where u(o) �

r(o). In this way, the network gradually learns to perform utility-
weighted sampling (Equation 11). The simulated outcomes could
be read out by a decision network that chooses the alternative with
the highest value of the utility estimate defined in Equation 12.
Thus, after sufficient learning the simulation network and the
decision network jointly perform utility-weighted sampling. The
above equations are meant as an abstract specification of network
properties rather than the definition of a concrete neural network,
but they suggest a way in which the brain might learn to perform
utility-weighted sampling.

Having proposed a learning mechanism that can give rise to
utility-weighted sampling, we will now evaluate its predictions
against the temporal dynamics of people’s risk preferences in
repeated decisions from experience.

Temporal Dynamics of Risk Preferences

Above, we simulated people’s risk preferences in the final
blocks of the experiments by Ludvig et al. (2014) assuming that
the participants had already learned the utility-weighted sampling
distribution. Here, we test whether the utility-weighted learning
(UWL) model can predict this learning outcome and capture the
temporal evolution of people’s risk preferences from the first block
through the last block. The utility-weighted learning model pre-
dicts participants’ choice probabilities as a function of seven
parameters: the number of samples s, the uncertainty �ε about
utilities, the learning rate �, the forgetting rate , the initial reward
expectancy r̄�0�, the rate � at which the reward expectancy r̄ is
being updated, and the probability of random choice prandom. To
estimate these parameters, we fitted the block-by-block choice
frequencies reported by Ludvig et al. (2014) by maximum-
likelihood estimation.

The parameter estimates were s � 1 samples, learning rate � �
1, forgetting rate  � 0.375, noise standard deviation �ε � 0.1,
initial reward expectancy 3, TD learning rate � � 0.05, probability
of random choice prandom � 0.64. We found that utility-weighted
learning captures several qualitative properties of how people’s
risk preferences changes with experience: Our simulations of Ex-
periments 1–2 captured that people gradually become more risk-
averse on loss trials but more risk-seeking on gain trials (Figure
6A). Our simulations of Experiment 3 captured that this effect is
reduced when gains and losses are nonextreme in the context in
which they occur (Figure 6B), and the simulation of Experiment 4
captured that more experience makes people more risk-seeking
when the high outcome is extreme, but more risk-averse when the
low outcome is extreme, even if all outcomes are gains or all
outcomes are losses (Figure 6C). According to utility-weighted
learning the determinant of risk-seeking is that the high outcome is
farther away from the learned reward expectancy than the low
outcome. The reward expectancy tracks to average across all
recent outcomes. Thus, UWL predicts risk seeking when the high
outcome is farther away from the average outcome than the low
outcome.

Predicting Memory Biases

Earlier in this article we simulated the experiments by Madan et
al. (2014) according to utility-weighted sampling. We found that
UWS correctly predicted the qualitative differences between mod-
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erate and extreme events in frequency estimation and memory
recall, but its predictions were more extreme than the biases
observed in people. In this section we revisit these effects with the
utility-weighted learning model. In addition, the utility-weighted
learning model also allows us to simulate the relationship between
memory biases and risk preferences, as well as the effect of recent
outcomes on risky choice.

Concretely, we fitted the UWL model to the block-by-block
choice frequencies in Experiments 1 and 2 by Madan et al. (2014)
using the maximum-likelihood method. We then used the resulting
parameter estimates to predict participants’ frequency estimates
and memory biases. To do so, we modeled people’s frequency
estimates according to utility-weighted sampling as defined in
Equation 22. Likewise, participants’ answers to the memory recall
question were modeled by the outcome that was sampled most
frequently; if two or more outcomes occurred equally frequently
one of them was chosen at random.

The maximum likelihood parameter estimates indicated in-
creased accuracy motivation: more simulations (s � 2), faster
learning (� � 9), and slower forgetting ( � 0). The estimated
standard deviation of the noise was �ε � 0.1, the estimated initial

reward expectancy r̄�0� was 7, the estimated rate at which the
reward expectancy is updated was 0.5, and the estimated proba-
bility of random choice was 0. With these parameters our model
captured people’s memory biases (see Figure 7) and their relation-
ship with risk seeking: Even though the risky choice generated the
moderate outcome (0 points) and the extreme outcome (
40
points) equally often, for most people the extreme outcome came
to mind first (Figure 7B), and their frequency estimates were
significantly higher for the extreme loss than for the moderate
outcome (Figure 7A). This was not the case for the high gain
(�40), because according to the parameter estimates participants
entered the experiment with the expectation that outcomes would
average 560 points. As a comparison with Table 6.6 shows, the
predictions of UWL are closer to the empirical data than the
predictions of the basic UWS model.

In addition, our model correctly predicted that people who
recalled the extreme gain first were more risk seeking on gain trials
than people who remembered the moderate outcome first (56.32 

0.24% vs. 50.83 
 0.26% risky choices) whereas people who
remembered the extreme loss first were less risk seeking on loss
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trials than people who remembered the moderate outcome first
(31.83% 
 0.34% vs. 33.67 
 0.34% risky choices). The simu-
lated frequency estimates were significantly correlated with the
model’s preference for the risky option: The higher the model
estimated the frequency of the extreme loss to be the fewer risky
choices it made on loss trials (r � �0.4419, p � 10�15). Con-
versely, risk seeking on gain trials increased with the estimated
frequency of the extreme gain (r � .23, p � 10�15). Utility-
weighted learning also captured that people were more risk seek-
ing when the most recent risky choice in the same context yielded
the good outcome than when it yielded the bad outcome: For gain
trials UWS predicted 8.6% higher risk seeking after receiving the
high gain (�40) than after winning nothing on the previous risky
gain trial. Conversely, UWS predicted 6.0% less risk seeking
following the large loss (�40) compared with no loss on the
previous risky loss trial.

Finally, we simulated Experiment 2 from Madan et al. (2014)
according to the same parameters. This experiment was identical to
Experiment 1 except that all outcomes were shifted by �40 points
so that there were no negative outcomes. Our model correctly
predicted that this manipulation changes none of the qualitative
effects observed in Experiment 1, and our model now correctly
predicted that people overestimate the frequency of the extreme
gain relative to the neutral outcome (UWS: 56.4% vs. 43.2%).

Validation on Decisions From Experience

Having shown that UWL predicts people’s biases in memory
recall and frequency estimation more accurately than the original
UWS model and captures the temporal dynamics of people’s risk
preferences in repeated decisions from experience and the effect of
recent outcomes on risky choice, we now evaluate UWL against
alternative models of repeated decisions from experience. To do
so, we use data from the Technion choice prediction tournament as
we did for our basic utility-weighted sampling model of decisions
from description. As before, we fit our utility-weighted learning
model to the training set by maximum-likelihood estimation, eval-
uate its predictive accuracy on the test set, and perform formal
model comparisons against the best models from the competition.

The only difference is that we now use the data sets and models
from the Technion tournament on repeated decisions from expe-
rience rather than decisions from description.

The parameter estimates were as follows: learning rate � � 2,
number of samples s � 9, forgetting rate  � 0, standard deviation
of the noise �ε � 0.1, probability of random choice prandom �
0.12, initial reward expectancy r̄�0� � 3, and � � 0.05. We set our
model’s parameters to these values and evaluated its predictions
against people’s choice frequencies on the test set; see Figure 8.
Our model’s predictions agreed with people’s risk preferences for
90% of the decision problems. The correlation between the pre-
dicted and observed choice frequencies was r � .80, and the
mean-squared error of the predicted choice frequencies was
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MSD � 0.0120. Our model thereby explained the data substan-
tially better than the basic reinforcement learning model that Erev
et al. (2010) considered as a baseline (66% agreement, r � .51,
MSD � 0.0263; t(59) � �3.2, p � .002), and not significantly
worse than the best model in the competition: the explorative
sampler with recency (MSD � 0.0066, t(59) � 1.65, p � .1, 86%
agreement, r � .89). Although the best model was provided as a
baseline, the best submission was the ACT-R model of instance-
based learning (MSD: 0.08, r � .89). After the competition,
Lejarraga, Dutt, and Gonzalez (2010) introduced an improved
instance-based learning model that performed slightly better than
the exploratory sampler with recency (MSD � 0.006, 86% agree-
ment, r � .89) and its mean-squared error was significantly lower
than that of our model, t(118) � �2.21, p � .01. The predictive
accuracy of the normalized reinforcement learning model was
comparable to the performance of our model (MSD: 0.0087, 84%
agreement, r � .84). Additional analyses comparing the risk pref-
erences of UWL to those of people are provided in the online
supplemental material.

Discussion

We hypothesized that utility-weighted sampling arises from
biased memory encoding. In this section, we formalized this pro-
posal by a biologically plausible learning rule that we call utility-
weighted learning (UWL). The empirical data of Ludvig et al.
(2014) and Madan et al. (2014) provides four strong pieces of
evidence for our hypothesis that the overrepresentation of extreme
events results from utility-weighted memory encoding: First, peo-
ple overweight outcomes with extreme utilities in decisions from
experience relative to equally probably outcomes with moderate
utilities. Second, this overweighting emerged gradually through
learning and the time course of learning matched the predictions of
our utility-weighted-learning model. Third, participants displayed
biases in memory recall that matched the biases of their decisions
and our model captured both. Fourth, as predicted by our model,
there was a significant correlation between the magnitude of each
participant’s bias in memory recall and the bias in their choice
frequencies. This is consistent with our model’s assumption that
the overweighting of events with extreme utilities and their height-
ened availability in memory have a common cause: utility-
weighted memory encoding. Although the correlation between
biases in memory and choice does not imply causation, our mo-
del’s assumption that utility-weighted memory encoding causes
memory biases that in turn cause biases in decision making does offer
a plausible explanation for this phenomenon. Under this assumption
the covariation of the ease with which extreme events come to
mind could plausible arise from individual differences in the
sensitivity to reward and punishment (Corr, 2004): The higher a
person’s reward sensitivity, the more biased their memory encod-
ing will be. The more biased the strengths of a person’s memories
are in favor of extreme events, the more easily they will be
recalled, and this in turn increases their decision weights.

We found that our model explained the temporal dynamics of of
people’s risk preferences and memory biases in repeated decisions
from experience and evaluated the utility-weighted learning model
against people’s choice frequencies in a wide range of decisions
problems. UWL was competitive with the best existing models of
decisions from experience. Together with the findings presented in

previous sections, the results in this section show that utility-
weighted sampling can provide a unifying, mechanistic explana-
tion for a wide range of biases in decisions from description and
decisions from experience. This is important for two reasons. First,
it is often implied that decisions from description and decisions
from experience rely on separate mechanisms, and second our
most influential theories of decision making are not mechanistic.

Although the experiments simulated here had only two possible
outcomes, the UWL learning model is equally applicable to deci-
sions with many possible outcomes and one example thereof can
be found in the Section “Payoff-Variability Effects in Decisions
With Very Many Possible Outcomes” of the online supplemental
material.

The proposed learning mechanism is similar to the Pearce-Hall
model of classical conditioning (Pearce & Hall, 1980) in that both
update the strength of a stimulus-reward association by an amount
proportional to the absolute value of a reward prediction error.
However, there are several important differences. Most impor-
tantly, our model learns the conditional probabilities of multiple
possible outcomes given a single cue whereas the Pearce-Hall
model learns to predict the intensity of a single reward or punish-
ment given multiple cues. Consequently, in the Pearce-Hall model,
the reward prediction is derived from the learned associations. By
contrast, in our model the reward prediction is learned indepen-
dently of the cue-outcome associations. Furthermore, the Pearce-
Hall model uses the reward prediction error from the previous trial
whereas our model uses the reward prediction error from the
current trial. The two models also differ in the remaining terms of
their learning rules.

To fit the temporal dynamics of risk preferences with learning,
we had to make a number of assumptions about the underlying
learning mechanisms. The details of this proposal are not essential
to our theory and may be revised and simplified in future versions
of the utility-weighted learning model. Instead, the utility-
weighted learning model should be seen as a proof of principle that
utility-weighted sampling can emerge from reward-modulated as-
sociative learning in the brain.

General Discussion

Our resource-rational analysis of decision making in high-risk
situations suggested that people should decide by utility-weighted
sampling. Utility-weighted sampling explains not only how we are
able to make sensible decisions under severe time pressure but also
why we overestimate the frequency of extreme events and have
inconsistent risk preferences. Utility-weighted sampling explains
why extreme events come to mind first and why people overesti-
mate their frequencies and overweight them in decisions under
uncertainty. Our model captures how people’s risk preferences
depend on valence (gains vs. losses), probability, the elicitation
method (pricing vs. choice), and on whether probabilities are
described or experienced. Utility-weighted sampling can thus ex-
plain preference reversals, the Allais paradox, and the fourfold
pattern of risk preferences. In addition, our utility-weighted learn-
ing model captures the temporal dynamics of people’s risk pref-
erences during repeated decisions from experience, the effect of
recent outcomes on risky choice, and the relationship between
memory biases and risk preferences.
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Our model’s predictive validity in the Technion choice predic-
tion tournaments for repeated decisions from description and de-
cisions from experience was competitive with, although not quite
as good as, the fit of the models that won these competitions. Yet,
although most of these models were specific to their competition,
our model was derived from first principles, it also applies to more
complex decisions with (infinitely) many possible outcomes, and it
can simultaneously explain a much wider range of biases in
decision making, judgment, and memory than ever attempted
before. In addition, our model does not just describe risk prefer-
ences but specifies the underlying (neuro)computational mecha-
nisms. The biases explained by our model include newly discov-
ered phenomena (Ludvig et al., 2014; Madan et al., 2014) that have
not been modeled before as well as classic findings that were
previously explained separately.

In the remainder of this article we synthesize and discuss the
results presented above. We start by showing that the difference
between our theory’s predictions for decisions from description
versus decisions from experience captures the description–
experience gap. We then discuss the similarities and differences
between UWS and previous theories of inconsistent risk prefer-
ences. Afterward, we take a step back and discuss how the work
presented here instantiates the general resource-rational approach
to modeling cognitive mechanisms. Next, we discuss the connec-
tions between our theory and theory of ecological rationality.
Finally, we acknowledge the limitations of our analysis, discuss
directions for future work, and conclude.

Utility-Weighted Sampling Captures the Description–
Experience Gap

People’s risk preferences in decisions from description and
decisions from experience are systematically different. This dif-
ference is known as the description–experience gap (Hertwig &
Erev, 2009). Most prominently, people appear to overweight small
probabilities in decisions from description but underweight them
in decisions from experience. Having applied utility-weighted
sampling to decisions from description and decisions from expe-
rience, we are now in a position to evaluate whether the difference
between the UWS model of binary decisions from description
(Equations 20–21) and the utility-weighted learning model (Equa-
tions 34–37) captures the description experience gap. To do so, we
computed the difference between the two models’ predictions on
the test set of the Technion choice prediction tournament (Figure
3 vs. Figure 8) and compared it against the difference between
people’s choice frequencies in these two conditions.

Figure 9 shows that the difference between the two models
correctly predicted the sign of the description–experience gap on
95% of the decision problems in the test set of the Technion choice
prediction tournament. The correlation between the predicted and
the actual description–experience gaps was r � .8853 (p �
10�15), and the mean squared deviation was 0.0361. Our model of
decisions from experience captures the effects of either not expe-
riencing, or gradually forgetting rare outcomes. This explains why
rare events tend to receive less weight in decisions from experi-
ence than in decisions from description. For instance, in problems
1–5 where the probability of the high outcome is at most 0.1,
people and utility-weighted sampling are more risk-seeking when
the probabilities are described than when they are experienced.

According to our models, there is another difference: In decisions
from description people oversimulate eventualities in which the
outcomes of two choices are extremely different. In decisions from
experience, by contrast, people simulate the possible outcomes of
each option independently, so that utility-weighted sampling over-
simulates each option’s most extreme outcome even when they are
identical. Thus, when choosing between losing a moderate amount
for sure and the chance of winning a small amount or losing a large
amount, UWS is more risk seeking in decisions from description
than in decisions from experience, and this correctly predicts the
positive description–experience gap in problems 30–34 (see Fig-
ure 9 and Erev et al., 2010). According to our theory, the
description–experience gap is not only due to the fact that rare
events in decisions from experience sometimes go unnoticed or are
gradually discounted or forgotten but also due to difference be-
tween overweighting unusually large and unusually small out-
comes in decisions from experience versus overweighting of pairs
of outcomes with large utility differences in binary decisions from
description. Recent empirical evidence for the important contribu-
tion of memory biases in favor of extreme events to the
description–experience gap (Madan et al., 2016) strongly supports
our model’s explanation. Furthermore, Kellen, Pachur, and
Hertwig (2016) found that people are more sensitive to the payoffs
and less sensitive to their probabilities in decisions from experi-
ence than in decisions from description even when the difference
between experienced frequencies and described probabilities is
controlled for. This too is consistent with the overweighting of
extreme payoffs in decisions from experience.

Comparison to Previous Theories of Judgment and
Decision Making

Unlike previous theories of decision making, our model is both
normative and mechanistic. In contrast to descriptive theories of
choice, our approach has been to explore the implications of
limited cognitive resources for the mechanisms by which people

Figure 9. Utility-weighted sampling captures the gap between people’s
risk preferences in decisions from description and decisions from experi-
ence. 95% agreement, r � .8853, mean-squared error 0.0361.
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should make decisions under uncertainty. In contrast to most
normative theories of choice, we have engaged with people’s
limited cognitive resources and derived a process model. This
makes our theory the first rational process model (Griffiths et al.,
2015) of cognitive biases in decision making. The proposed mech-
anism for decisions from experience is psychologically plausible
in that it relies on the well-known availability bias in memory
recall (Tversky & Kahneman, 1973). Furthermore, we have shown
that UWS naturally emerges from a biologically plausible reward-
modulated associative plasticity mechanism that is driven by the
reward prediction error conveyed by dopamine (Schultz et al.,
1997). But unlike most process models, UWS was derived from
first principles and instantiates rational information processing.

Our theory provides the first rational perspective on the height-
ened availability of extreme events and the cognitive biases in
judgment and decision making that result from it. We have shown
that it can explain a wide range of phenomena in memory, judg-
ment, learning, decisions from description, and decisions from
experience. Subsets of these phenomena, such as the simulated
violations of expected utility theory in decisions from description
were already accounted for by previous theories, but our model is
the first to provide a unifying explanation for all of them, and none
of the previous theories could explain why events with extreme
utilities should be remembered first and sway people’s decisions.
As far as we know, UWS is the first theory that can simultaneously
explain decisions from description and decisions from experience,
and it reconciles the discrepancies between them. In particular, no
previous theory was able to reconcile the reflection effect in
decisions from description (risk aversion for a 50% chance of a
large gain but risk seeking for a 50% chance of a large loss) with
the exact opposite of this effect in decisions from experience
(Ludvig et al., 2014; Madan et al., 2016). We think that our theory
is unique in providing the first rational process model of availabil-
ity biases in judgment and decision making and offering a unifying
explanation for a very wide range of seemingly disparate phenomena,
but it builds on previous work (Bordalo et al., 2012; Griffiths et al.,
2015; Hertwig et al., 2005; Lichtenstein et al., 1978; Ludvig
et al., 2014; Madan et al., 2014; Pachur et al., 2012; N. Stewart et al.,
2006; Tversky & Kahneman, 1973; Vul et al., 2014) and has
commonalities with many existing theories of judgment and deci-
sion making. We provide a detailed discussion of how our theory
is similar to and different from previous accounts of memory,
frequency judgment, decisions from description, and decisions
from experience in the online supplemental material. Table 5
summarizes these comparisons in terms of the range of phenomena
explained by UWS and some previous models and theories,
namely the availability-by-recall model (Hertwig et al., 2005;
Pachur et al., 2012), the regressed-frequency model (Hertwig et al.,
2005), the value-assessment model (Barron & Erev, 2003),
instance-based learning theory (T. C. Stewart, West, & Lebiere,
2009), the exploratory sampler with recency (Erev et al., 2010), the
contingent average and trend (CAT) model (Plonsky, Teodorescu,
& Erev, 2015), the decision-by-sampling model (N. Stewart et al.,
2006), salience theory (Bordalo et al., 2012), the priority heuristic
(Brandstätter et al., 2006), regret theory (Loomes & Sugden,
1982), prospect theory (Kahneman & Tversky, 1979), stochastic
cumulative prospect theory (SCPT; Erev et al., 2010), dynamic
prospect theory (Post et al., 2008), disappointment theory (Bell,
1985; Loomes & Sugden, 1984, 1986), and the 3-moments model

(Allais, 1979; Hagen, 1979). These and other comparisons suggest
that UWS is the first mathematical theory to provide a unifying
explanation for availability biases in frequency judgment, mem-
ory, decisions from experience, and decisions from description.

Resource-Rationality

We derived utility-weighted sampling by resource-rational anal-
ysis (Griffiths et al., 2015): We first defined the function of
decision making. Second, we modeled people’s cognitive capaci-
ties by an abstract computational architecture that can simulate
outcomes by sampling, evaluate their utility, combine the simu-
lated utilities into an estimate of each action’s expected utility by
a weighted average, and choose the action with the highest utility
estimate. In addition, we assumed that time constraints and cog-
nitive capacity severely limit the number of simulations the mind
can perform. Third, we derived an approximately optimal strategy
for allocating the architecture’s computational resources. Finally,
we evaluated our original proposal (Lieder, Hsu, & Griffiths,
2014) against empirical data and alternative models of decision
making under uncertainty and refined it by making the utility-
function context sensitive. Consistent with previous results (Vul et
al., 2014), we also found that people appear to perform more
simulations for high-stakes decisions (see Section “Deal or No
Deal: Overweighting of Extreme Events in Real-Life High-Stakes
Economic Decisions” of the online supplemental material) than for
low-stakes decisions (Technion choice prediction tournament).
Furthermore, simulations reported in the online supplemental ma-
terial showed that UWS captures that people’s decision quality
approaches optimality as the difference between their options
increases. Overall, we found that the availability biases and incon-
sistent risk preferences modeled in this article can be reconciled
with the rational use of cognitive resources (Griffiths et al., 2015).

Our rational analysis assumed that people’s judgments and
decisions are based on sampling. We view sampling as a rational
computational mechanism for approximating the expected utilities
in decision problems with many possible outcomes whose proba-
bilities have to be estimated from experience. This characterization
holds for most everyday decisions. This suggests that utility-
weighted sampling might be a resource-rational strategy for the
decisions people make in real life. By contrast, when choosing
between simple gambles with numerically stated outcome proba-
bilities and payoffs, people could, in principle, compute each
gamble’s expected value and choose the gamble with the highest
expected value. When the stakes are high enough to offset the
additional time and effort required to compute expected values then
the expected value strategy would become resource-rational and par-
ticipants should apply it. Is it therefore a sign of irrationality when
people use utility weighted sampling in decisions from description?
On the one hand, it appears suboptimal that people use sampling in
simple decisions from description instead of relying on arithmetic. On
the other hand, decisions from description are very rare outside the
laboratory and resource-rationality is defined with respect to the
distribution of problems in the agent’s natural environment. Fur-
thermore, the payoffs used in the decisions from description par-
adigm are usually small or hypothetical, and people’s application
of mathematical procedures is often error prone, slow, and effort-
ful. We therefore believe that people’s use of utility-weighted
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sampling in the simulated decisions from description is not nec-
essarily inconsistent with resource-rationality.

Our results should be taken with a grain of salt, because there is
no guarantee that the parameter estimates for which our model
captures empirical phenomena accurately reflect the resource-
limitations of the human brain. We cannot rule out that the actual
opportunity cost of simulating an outcome is so low that it would
be resource-rational for people to generate so many samples that
their availability biases should be much smaller than they are.
Hence, without independent measurements of the available cogni-
tive resources we cannot conclude that people are resource-rational
but only that the simulated cognitive biases could be resource-
rational in principle. To complete our theory of resource-rational
decision making, future work will have to provide a precise spec-
ification of the available cognitive resources and their costs as well
as a mechanism that determines the optimal number of samples.
We will discuss these limitations and future directions in more
detail below.

Pushing our abstract computational model further toward the
algorithmic and implementational level (Marr, 1982), we have
shown that utility-weighted sampling can emerge from reward-
modulated associative learning during repeated decisions from
experience. Our learning rule assumes that synaptic plasticity is
modulated by the absolute value of the reward prediction error
(Equation 34) which can be interpreted as surprise or emotional
salience. The success of the utility-weighted learning model might
suggest that people gradually learn to make more rational use of
their finite cognitive resources and that emotion contributes to the
emergence of resource-rational decision making. A recent neuro-
imaging study discovered a neural correlate of the absolute reward
prediction error in the basolateral amygdala (Roesch, Esber, Li,
Daw, & Schoenbaum, 2012)—an area known to mediate the
impact of emotional salience on associative learning in the dorsal
and ventral striatum (Cador, Robbins, & Everitt, 1989; McGaugh,
2004; McGaugh, McIntyre, & Power, 2002). This suggests that the
learning mechanism of our UWL model could be implemented via
the amygdala’s control over the neuromodulation of synaptic plas-
ticity. Our work on utility-weighted sampling thereby illustrates
how resource-rational analysis can be used to connect the compu-
tational level of analysis to the algorithmic and the implementation
level (Griffiths et al., 2015; Marr, 1982). Future work might be
able to leverage insights from neuroscience to quantify the
resource-constraints and cost of computation in models of rational
information processing (Lieder et al., 2013).

Connection to Fast-and-Frugal Heuristics and
Ecological Rationality

Interestingly, our resource-rational analysis led to simple and
psychologically plausible decision strategies that resemble two
fast-and-frugal heuristics (Gigerenzer, 2008). Biased mental sim-
ulation (stochastically) considers the most important consequence
first—like take-the-best—and binary choices are made by tallying
if there are more positive than negative simulated outcomes—as in
the tallying heuristic. The fact that we derived this strategy as a
resource-efficient approximation to normative decision making
(resource-rational analysis) sheds light on why fast-and-frugal
heuristics work and how they can be generalized to harder prob-
lems (cf. Lieder et al., 2013).

Pleskac and Hertwig (2014) point out that natural decision
environments often exhibit and inverse relationships between
probability and reward, such as power-law distributions. It is these
reward structures for which representative sampling fails and
utility-weighted sampling becomes necessary. This suggests that
utility-weighted sampling is an ecologically rational heuristic, and
this might be why it is so effective and predictive of people’s
decisions and biases. Although we derived utility-weighted sam-
pling for complex real-life decisions with infinitely many possible
outcomes, we found that it also captures the simpler two-outcome
choices people make in laboratory experiments that could be
solved by computing and maximizing expected value. This is
consistent with the view that people’s heuristics are adapted to
the structure of the problems they face in real-life rather than
those posed in the laboratory (Gigerenzer, 2015). This high-
lights the value of deriving theories from an analysis of the
problems people have to solve in real life instead of building
them in a bottom-up fashion from empirical findings in artifi-
cial laboratory experiments.

Importantly, utility-weighted sampling works not despite its
bias but because of it (cf. Gigerenzer & Brighton, 2009). The
underlying principle is the bias-variance tradeoff (Hastie et al.,
2009). Fast-and-frugal heuristics tolerate bias to make good infer-
ences from incomplete, noisy observations, and utility-weighted
sampling tolerates bias to make good decisions based on incom-
plete, noisy simulations of possible outcomes. Thus, biased minds
cannot only make better inferences but also better decisions. How-
ever, our results highlight a tension between good inference and
good decision making: To make good decisions bounded sample-
based agents should oversample extreme events even though this
leads to bad inferences such as the overestimation of event fre-
quencies, and people appear to do the same. In more general terms,
the human mind should, and appears to, sacrifice the rationality of
its beliefs (theoretical rationality) for the rationality of its actions
(practical rationality, Harman, 2013), because limited computa-
tional resources necessitate tradeoffs. Concretely, our analysis
suggested that the availability bias is a manifestation of resource-
rational decision making. Being biased can be resource-rational.

Limitations and Future Work

In addition to the many phenomena that our model captures
there are others that it does not capture. For instance, UWS with
the parameters estimated from the Technion choice prediction
competition for decisions from description does not capture the
common-ratio effects observed by Starmer and Sugden (1989).
Consistent with the failure of UWS to capture these effects,
Starmer and Sugden (1989) demonstrated that at least some
common-ratio effects are partly driven by a distortion of stated
probabilities that is independent of the outcome. Furthermore,
UWS with the parameters estimated from the Technion choice
prediction competition for decisions from description also cannot
capture the violation of weak stochastic transitivity demonstrated
by Tversky (1969) as this effect appears to be driven by people’s
limited sensitivity to small differences in outcome probability. For
both experiments, UWS predicted that people would always
choose the gamble with higher expected value. These discrepan-
cies highlight that probability weighting in decisions from descrip-
tion is impacted not only by the extremity of the associated
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outcomes but also by the probabilities themselves. UWS fails to
capture these effects because it cannot account for outcome-
independent distortions of probability. Incorporating this distortion
into the UWS model of decisions from description is a potential
direction for future research.

It is important to keep in mind that our goal was not to test
a specific computational mechanism but rather to explore the
implications of finite time and limited cognitive resources for
decision making under uncertainty. We explored these impli-
cations under specific simplifying assumptions about people’s
utility function, resources, and cognitive operations that may
have to be revised in the future. The empirical data we exam-
ined supported the conclusion that the neural mechanisms of
decision making share some of the abstract properties of utility-
weighted sampling, but there additional intricacies that remain
to be captured. The following discrepancies between our mod-
els’ predictions and human behavior could be a starting point
for making the utility-weighted sampling mechanism more re-
alistic: Although our model’s predictions of the Allais paradox
are qualitatively correct, the predicted effect was much smaller
than the one observed by Kahneman and Tversky (1979). Fur-
thermore, despite its large number of parameters, the utility-
weighted learning model does not fully capture the experimen-
tal data of Ludvig et al. (2014); in particular, our model could
not predict that participants in Experiment 3 were more risk
seeking for nonextreme loss trials than for nonextreme gain
trials. Another avenue toward identifying the computational
mechanism that underly availability biases could be to investi-
gate their neural implementation. Although the utility-weighted
learning model is inspired by neuroscientific findings, our
hypotheses about the neural basis of utility-weighted learning
remain to be tested.

Unlike most laboratory experiments, many real-world deci-
sions involve many possible alternatives. This makes extending
UWS to multialternative decisions an important direction for
future research. One way to extend UWS to multialternative
choice is to apply the UWS mechanism defined in Equation 12
to efficiently estimate the expected utility gain of each option
separately and choose the alternative whose utility estimate is
highest:

�Ûq̃,s
IS (a) � 1

�j�1
s 1 ⁄ |�u�oj

(a)� � �ū |
· �

j�1

s �u�oj
(a)�

|�u�oj
(a)� � �ū |

,

(38)

a� � arg max
a�A

Ûq̃,s
IS (a), (39)

where a�A ranges from the first to the last alternative, and �u� can
be thought of as the average utility gain obtained in past decisions
or the reward expectancy conveyed by dopamine, as discussed
above. This mechanism could be very efficient for decisions from
experience because it allows multiple alternatives to be evaluated
in parallel. Given the resulting estimates of the expected utility
gain, the brain could read out the preferred action with a winner-
take-all network (Maass, 2000). Alternatively, it is conceivable
that decision makers sometimes reduce multialternative decisions
into a series of binary choices and make those choices with the
UWS heuristic for binary decisions (Equations 18–21). Finally, it
is also conceivable that decision makers would first identify which

alternatives are most promising by evaluating them separately
according to Equation 38 and then apply the UWS heuristic for
binary decisions (Equations 18–21) to choose between the two
actions with the highest estimated utility gains. Future work should
evaluate which of these alternative extensions best predicts peo-
ple’s multialternative decisions from experience.

Our resource-rational analysis assumed that the limited re-
source is the number of samples that can be generated. This
assumption appears justified for memory-based decisions where
sampling by memory retrieval is the primary cognitive opera-
tion. But in decisions from description other cognitive and
perceptual operations, such as inspecting the probabilities, or
gauging the differential utilities of pairs of outcomes also
consume a non-negligible amount of time and cognitive re-
sources. In particular, the cost of determining the differential
utility of all pairs of outcomes becomes prohibitive as the
number of outcomes increases. Since our analysis ignores these
computational costs, the applicability of our original model of
decisions from descriptions is limited to choices with a small
number of possible outcomes. However, this limitation does not
apply to our model of decisions from experience, and a recent
resource-rational analysis of multialternative, multioutcome de-
cisions from description captured important aspects of people’s
adaptive decision strategies in the Mouselab paradigm (Lieder,
Krueger, & Griffiths, 2017).

Although the simulation and integration mechanisms of UWS
were derived from first principles, the choice of the utility function
in Equation 16 was less principled. We chose it because it is the
simplest instantiation of the efficient coding theory proposed by
Summerfield and Tsetsos (2015) that captures our findings. It thus
remains to be validated independently. Consistent with this nor-
malized representation of utility, there is neural evidence that the
human brain encodes relative value rather than absolute value
(Mullett & Tunney, 2013). Yet, this evidence equally consistent
with a rank-dependent utility function. Neurophysiological data
from animal studies (Louie et al., 2011) and psychophysical data
from humans (Louie et al., 2013) speak to the encoding of nor-
malized value, but further research is needed to determine the
exact nature of the brain’s relative utility representation and its
variability.

Although we focused on one particular strategy for mitigating
resource constraints, namely adjusting the simulation distribution,
the brain also appears to adjust the number of samples. Our own
and other recent findings suggest that people draw more samples
when the stakes are high (Vul et al., 2014) and when they are very
uncertain (Hamrick, Smith, Griffiths, & Vul, 2015). The models
presented here capture neither of these effects, but future versions
of UWS will accommodate them according to the principle that
people make rational use of their finite cognitive resources (Grif-
fiths et al., 2015). Recent work has developed a mechanism for
determining the optimal number of samples (Tajima, Drugowitsch,
& Pouget, 2016), and future work should integrate this mechanism
into UWS.

Testing whether the magnitude of the simulated availability
biases is resource-rational will additionally require independent
measurements of people’s cognitive resources. Therefore, mea-
suring resource constraints independently and using these mea-
surements to derive and test quantitative predictions of human
performance as a function of incentives and time pressure is an
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important direction for future research. A first step toward
deriving these predictions could be to measure how long it takes
to generate a single sample using psychophysical methods
(Lengyel, Koblinger, Popović, & Fiser, 2015). It might also be
possible to measure how long it takes to generate a sample by
investigating the relationship between the time available to
make a choice and the resulting choice variability. Alterna-
tively, a lower bound on how long it takes to generate a sample
could be derived from spiking neural network models of how
the brain generates samples (Buesing, Bill, Nessler, & Maass,
2011). This bound on how fast samples can be generated could
then be translated into an upper bound on how much the
availability biases simulated here can be reduced by financial
incentives. The estimated time per sample could also be used to
derive the cost of sampling in scenarios where people have to
trade off how much computation to invest in a decision against
the number of choices they can make (Vul et al., 2014). The
resulting model of the cost of sampling could inform a rational
mechanism for choosing the number of samples (Hay, Russell,
Tolpin, & Shimony, 2012; Tajima et al., 2016; Vul et al., 2014)
to be generated by utility-weighted sampling. Future experi-
ments should also test the assumption that the number of mental
simulations is a critical limiting factor to the quality of people’s
decisions. This assumption predicts that time pressure and
cognitive load should make people’s risk preferences more
inconsistent between gains versus losses. Conversely, instruct-
ing or incentivizing participants to simulate their decision more
often should reduce the impact of extreme events.

Another avenue for future research is to investigate whether
people use utility-weighted sampling adaptively. Three mecha-
nisms of adaptivity are conceivable: First, people might adapt the
number of simulations to the decision problem’s incentives for
speed and accuracy. Second, people might use their current esti-
mate of the expected utility gain to adapt their simulation distri-
bution from one simulation to the next as in adaptive importance
sampling (Oh & Berger, 1992):

ūs � Ûq,s�1
IS (40)

Third, people might use utility-weighted sampling selectively only
for those problems in which they expect it to work well (Lieder &
Griffiths, 2015, in press).

Finally, utility-weighted sampling makes a number of novel
predictions that can be tested empirically: Because the pre-
dicted availability biases increase with the extremity of the
event, the probability-weighting function (Tversky & Kahne-
man, 1992) should be monotonic in the outcome’s payoff rel-
ative to other outcomes. According to our UWL model, the rate
at which action-outcome associations are learned is propor-
tional to the absolute value of the reward’s utility. This assump-
tion could be tested by measuring the temporal evolution of
memory biases as a function of outcome extremity in a modified
version of the paradigm by Madan et al. (2014). In addition, the
utility-weighted learning model predicts that whether an out-
come becomes overweighted and how strongly depends on what
the decision maker expected when they experienced that out-
come: A person who expected a large reward will come to
overweight a neutral outcome whereas a person whose reward
expectation was zero would come to underweight it. Likewise,
people with a negative reward expectation should come to

overweight positive outcomes much more strongly than people
with a positive reward expectation and vice versa. In terms of
individual differences, UWL predicts that people with lower
sensitivity to rewards and punishments (Corr, 2004) should be
less susceptible to develop availability biases in memory recall,
frequency estimation, and decision making than people with
higher reinforcement sensitivity. Furthermore, people who are
more sensitive to punishment than to reward should be more
prone to develop such biases for losses than for gains, and the
opposite should be true for people who are more sensitive to
reward than to punishment. Perhaps the most counterintuitive
prediction of UWS is that for certain decisions, such as the one
illustrated in the online supplemental material, where people’s
risk preferences should become more biased the more people
think about them.

Conclusion

A wide range of cognitive biases in judgment and decision
making may result from the rational use of finite computational
resources. We derived the implications of two bounds on human
rationality: First, limited time and finite processing speed re-
strict the number of simulations that can be performed. This
makes biased simulation necessary to guarantee that important
outcomes are taken into account. Second, a finite representa-
tional bandwidth limits the fidelity of each simulation. The
rational use of this finite representational bandwidth by effi-
cient coding scales reward values by their dynamic range and
this limits the discriminability of similar outcomes in the con-
text of extreme eventualities (Summerfield & Tsetsos, 2015).
Our results show that utility-weighted sampling is a promising
rational process model of judgment and decision making: UWS
predicts a wide range of cognitive biases in memory recall,
learning, frequency estimation, decisions from experience, and
decisions from description. According to our model all of these
availability biases result from the rational use of limited time
and bounded cognitive resources. From this perspective, cog-
nitive biases are a window on resource-rational information
processing rather than a sign of human irrationality.
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Appendix A

Derivation of the Optimal Importance Distribution for Self-Normalized Importance Sampling

One way to derive the optimal importance distribution q for esti-
mating the expected value of f with respect to p, that is �p�f�x��, is to
minimize the asymptotic variance (Equation 7) of the self-normalized
importance sampling estimator (Equation 5) subject to the con-
straints that �q�x� dx � 1 and q(x) � 0 for all x using variational
calculus (Gelfand & Fomin, 2000). To solve this constrained
optimization problem we minimize its Lagrangian

L(q) � 1
s · � p(x)2

q(x) · (f(x) � �p[X])2dx � � · � q(x) dx, (41)

where � is the Lagrange multiplier. To minimize the Lagrangian
L(q) we compute its functional derivative

�
�q L(q) � 1

s
p(x)2

q(x)2 · (f(x) � �p[X])2 � �, (42)

and set it to zero. Solving that equation for q yields

q(x) � 1
� · s · p(x) · | f(x) � �p[X] | . (43)

Therefore, the optimal importance distribution for self-
normalized importance sampling is proportional to p�x� · | f�x� �

�p�X� | .

Appendix B

Worked Example of UWS Applied to Binary Decisions From Description

Here we provide a worked example of how UWS makes the
decision whether or not to accept a gamble. We consider the choice
between a gamble with a 90% chance of losing $1 (o1 � �1) and
a 10% chance of winning $99 (o2 � 99) versus $1 for sure. Thus,
the largest and the smallest possible outcome are omax � 99 and
omin � �1. For the sake of illustration, let’s assume that the utility
function is like the one defined in Equation 16, but deterministic:

u(o) � o
omax � omin

. (44)

Hence, the utility of the sure gain is u(1) � 0.01, the probability
of the gamble’s likely loss is u(�1) � �0.01 and utility of the
gamble’s unlikely gain is u(99) � 0.99.

If the gamble is chosen, then its first outcome o1 � �1 has a
differential utility of �U(o1) � u(�1) � u(1) � �0.02 whereas its
second outcome has a large positive differential utility of �U(o2) �
u(99) � u(1) � 0.98. Given these differential utilities, we can now
compute the distribution the decision-maker should sample from to
decide whether or not to take the sure gain by applying Equation 20:

q̃(�U � �0.02) 	 p(o1) · |�u(o1) | � 0.9 · 0.02 � 0.018

(45)

q̃(�U � �0.98) 	 p(o2) · |�u(o2) | � 0.1 · 0.98 � 0.098.

(46)

To normalize this probability distribution we divide each value
by their sum. This yields

q̃(o1) �
p(o1) · |�u(o1) |

p(o1) · |�u(o1) |� p(o2) · |�u(o2) | � 0.1552 	 0.16

(47)

q̃(o2) �
p(o2) · |�u(o2) |

p(o1) · |�u(o1) |� p(o2) · |�u(o2) | � 0.8448 	 0.84.

(48)

This means that UWS would simulate the possibility of
losing out on the $99 prize more than 80% of the time even
though its probability is only 10%. If the decision-maker gen-
erates two samples, then there are four possible simulations
results: (o1, o1), (o1, o2), (o2, o1), (o2, o2). After the outcomes
have been simulated, the UWS heuristic for binary decisions
from description determines their utilities and tallies how often
the utility is positive minus how often it is negative. If the
resulting count is positive, then UWS accepts the gamble. If the
count is negative, then it declines the gamble, and if the count
is zero, then UWS has no preference and chooses at random. All
possible outcomes of this process and their respective proba-
bilities are summarized in Table B1. Summing up the proba-
bility of the simulations that lead UWS to accept the gamble
reveals that it predicts that about 84.48% of people who are
offered the gamble should accept it. This illustrates that UWS
can identify the correct decision with high probability using
only two simulations.

(Appendices continue)
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Appendix C

Detailed Explanation of How UWS Explains the Fourfold Pattern of Risk Preferences

In this appendix we explain how UWS chooses between a
two-outcome gamble and its expected value and show how this
gives rise to the fourfold-pattern of risk preferences. These deci-
sions can be formalized as the choice between a p · 100% chance
of winning $x and winning nothing otherwise versus the gamble’s
expected value p · x dollars for sure. As a first step towards
explaining UWS we assume that each outcome’s utility was equal
to its monetary value, that is u(x) � x.6 In this case, the differential
utility of choosing a gamble that yields x with probability p over its
expected value p · x is

�U � x � p · x with probability p
�p · x with probability 1 � p

. (49)

Thus, the utility-weighted sampling distribution q̃ becomes

q̃(x � p · x) 	 p · |x � p · x | � p · (1 � p) · |x | (50)

q̃(0 � p · x) 	 (1 � p) · |�p · x | � (1 � p) · p · |x | .
(51)

Note that the two terms are equal. Therefore, if we normalize the
distribution we find that

q̃(x � p · x) � q̃(0 � p · x) � 0.5. (52)

As our first concrete example, let’s consider the choice between
a 1% chance of winning $100 versus $1 for sure. In this case, the
differential utility of winning is $99 and the differential utility of
losing is �$1. Hence, the differential utility of winning the gamble
is 99 times as extreme as the differential utility of losing the
gamble. Thus, we would intuitively expect UWS to over-simulate
winning relative to losing. This is indeed the case since UWS will
simulate winning and losing as if they were equally probable
(Equation 52). In this example UWS over-simulates winning be-
cause the differential utility of winning ($99 dollars) is more
extreme than the disutility of losing (�$1). As our second concrete
example, let’s consider the choice between a 99% chance of
winning $100 versus $99 for sure. Now the differential utility of
winning is $1 whereas the differential utility of losing is minus
$99. The sampling distribution is still 50/50. Thus, now UWS
over-simulates losing the gamble because the differential utility of

losing is 99 times as extreme as the utility of winning. This
illustrates that UWS always over-simulates the event whose dif-
ferential utility is most extreme.

Next, let’s work through how the simulations are translated into
decisions. For simplicity, let’s assume that the decision-maker
generates only two samples. In our examples there are two possible
outcomes of each of the two simulations. So there are four possi-
bilities in total. Intuitively, these possibilities correspond to (lose,
lose), (lose, win), (win, lose), and (win, win). In the first case, the
decision-maker would decline the gamble and choose the sure
outcome instead. In the second and the third case the decision-
maker would not have a systematic preference and their decision
would be determined by noise. In the fourth case, that is (win,win),
the decision-maker would choose the gamble. Critically, these four
simulation results occur with different probabilities. These proba-
bilities depend on the simulation distribution q̃, which in turn
depends on the probability p of winning the gamble. Concretely,
the probability that UWS will choose the gamble over the sure
payoff is the probability of sampling (win,win) plus one half of the
probability of sampling (win,lose) or (lose,win).

Table C1 summarizes the probabilities of the four possible
outcomes and the resulting choice frequencies for the general
case and the two examples. As this table shows, the probabilities
of the four scenarios add up such that the probability of choosing
the gamble based on two simulations is equal to the probability to
simulate winning the gamble. Consequently, when offered the
choice between a 1% chance of winning $100 versus $1 for sure,
UWS is risk neutral because it chooses the gamble 50% of the
time. When offered the choice between a 99% chance of winning
$100 versus $99 for sure, UWS is also risk neutral and chooses the
gamble only 50% of the time. However, when the utility function
is non-linear or noisy then the resulting judgments appear to be
risk-seeking or risk-averse depending on the problem posed to the
decision-maker.

6 We will soon return to the stochastic, normalized utility function we
used for the simulations reported in the Main Text.

(Appendices continue)

Table B1
Utility-Weighted Sampling Applied to the Decision Between a Gamble With a 90% Chance of
Losing $1 and a 10% Chance of Winning $99 Versus a Sure Gain of $1

Simulated outcomes Utilities Count Decision Frequency

(o1, o1) (�.02, �.02) �2 Decline gamble .1552 · .1552 � 2.41%
(o1, o2) (�.02, �.98) 0 Accept with prob. .5 .1552 · .8448 � 13.11%
(o2, o1) (�.98, �.02) 0 Accept with prob. .5 .8448 · .1552 � 13.11%
(o2, o2) (�.98, �.98) �2 Accept gamble .8448 · .8448 � 71.37%

P(choose gamble) 84.48%
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To illustrate this, let’s see what happens when we take into
account that the brain’s representation of value is noisy so that
u�x� � x

xmax � xmin
� ε where ε � ��0, 0.17�. The utility affects two

stages of the decision-process: It biases the probability distribution
according to which different outcomes will be simulated (q̃) and it
is used to judge the value of the simulated outcomes. Since the
utility is noisy, both stages are subject to noise. In this example the
noise has no systematic effect on the simulation frequencies be-
cause ��q̃�u�x� � u�p · x��� � q̃�x � p · x� and ��q̃�u�0� �
u�p · x��� � q̃� � p · x�. However, the noise in the utility function
does systematically bias how the simulated outcomes are trans-
lated into a decision. The reason is that the noise ε is more likely
to flip the sign of values that are close to zero than the sign of
values that are far from zero.

Concretely, for p � 0.01, the differential payoff of winning is
$99 whereas the differential payoff for losing is only �$1. The
utility function u divides these differential payoffs by the range of
possible payoffs (xmax � xmin � 100). This transforms these two
differential payoffs into �0.99 and �0.01 respectively. Next, the
noise ε is sampled from a normal distribution with mean zero and
standard deviation � � 0.17. Thus, for each simulation of losing
there is a roughly 48% chance that the sign of its differential utility
will be flipped from negative to positive, but the probability that
the sign will flip for a simulated win is less than 2 in one billion.
This means that if losing is simulated k times, then the probability
that the sign will be flipped for at least one of those simulations is
1 � (1 � 0.48)k.

From the Technion data set we estimated that the number of
samples is s � 10. Winning and losing are simulated with equal
probability. So a typical value for k would be 5, and when 5 losses
are simulated then there is a 96% chance that the sign flips for at
least one of them. When this happens in the example where the
person simulated 5 wins and 5 losses, then there will be more
simulations in favor of the gamble than against it. So the UWS
heuristic for binary decisions from description will choose the
gamble. This induces risk seeking in the domain of gains when
p � .5.

By contrast, when the probability of winning is 99% the differ-
ential payoff for winning (i.e., $1) is closer to zero than the
differential payoff for losing (i.e., �$99). Therefore, now the noise

has exactly the opposite effect, and this induces risk-aversion.
Thus, like people, UWS is risk-seeking for improbable gains but
risk averse for probable gains. These effects become less extreme
as the probability of winning approaches 50% but they do persist.
For instance, for the choice between a 30% chance of winning
$100 versus $30 for sure, the normalized differential payoff for
losing is �0.3, which is still less than two standard deviations of
the noise. Consequently, there is an almost 4% chance that its sign
will be flipped for a single simulation of losing. This probability is
small but its cumulative effect is non-negligible: it entails that
when 5 losses are simulated then there is an 18% chance that the
sign will be flipped for at least one of them, and this could be
enough to make the decision-maker prefer the risky gamble.

Next, let’s see how UWS makes decisions in the domain of
losses. Let’s start by considering the choice between the 1% risk to
lose $100 and losing $1 for sure. In this case, the differential
utilities for choosing the gamble are �$99 when the loss occurs
versus $ � 1 when the loss does not occur. The corresponding
normalized differential payoffs are �0.01 and �0.99. Thus, it is
very likely that the addition of noise will flip the sign of the
positive outcome into a minus but very unlikely that it would flip
the sign of the negative outcome. Therefore, the noise tilts the
balance towards negative outcomes and thereby induces risk aver-
sion. Conversely, if we were choosing between a 99% risk of
losing $100 and a sure loss of $99, then the normalized differential
payoffs would be �0.01 for the big loss and 0.99 for its absence.
Hence, the noise would be very likely to flip the sign of the
negative outcome into a plus, but it would almost never flip the
sign of the positive outcome. This tilts the balance towards positive
outcomes, and thereby induces risk-seeking. Thus, as for people,
the risk preferences of UWS flip when the outcomes are framed in
terms of losses instead of gains. These examples illustrate that
UWS correctly predicts the fourfold pattern of risk preferences.
Note that although the noise in the utility function is necessary to
get these effects, none of them would occur if the outcomes were
simulated according to their actual frequencies. Therefore, the
over-simulation of extreme outcomes plays an important role in
utility weighted sampling’s explanation of the fourfold pattern of
risk preferences.

(Appendices continue)

Table C1
Two Worked Examples of Utility-Weighted Sampling (UWS) Applied to the Choice Between a
Gamble ($X With Probability p) Versus Its Expected Value (p · x Dollars for Sure) for a Linear
Utility Function Without Noise

Samples Decision Frequency Freq. if p � .01 Freq. if p � .99

(win, win) Gamble q̃�x � p · x�2 .5 · .5 � .25 .5 · .5 � .25
(lose, lose) Sure option q̃�0 � p · x�2 .5 · .5 � .25 .5 · .5 � .25
(win, lose) Choose randomly q̃�x � p · x� · q̃�� p · x� .5 · .5 � .25 .5 · .5 � .25
(lose, win) Choose randomly q̃� � p · x� · q̃�x � p · x� .5 · .5 � .25 .5 · .5 � .25
P(choose gamble) q̃�x � p · x� .5 .5

Note. These predictions change significantly when UWS takes into account that outcome valuation is noisy, as
discussed in the text.
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Furthermore, our model makes the counterintuitive prediction
that for choices between a gamble and its expected value the
inconsistencies in people’s risk preferences increase with the num-
ber of simulations. Thus, although increased stakes seem to in-
crease the number of simulations, our model predicts that this will
exacerbate people’s inconsistent risk preferences rather than ame-
liorate them. Therefore, in this particular case incentives should
increase ‘irrationality’ instead of reducing it. This is very counter-

intuitive because it means that people should become more irra-
tional the more they think, and the way to make them more rational
would be to encourage them to think less. Testing this prediction
is an interesting direction for future research.
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